Skip to main content
Log in

Characteristics of microseismic b-value associated with rock mass large deformation in underground powerhouse caverns at different stress levels

不同应力水平下地下厂房洞室群围岩大变形微震b值特征

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China. During the development of rock mass large deformation, a sequence of fractures was generated that can be monitored using microseismic (MS) monitoring techniques. Two MS monitoring systems were established in two typical underground powerhouse caverns featuring distinct geostress levels. The MS b-values associated with rock mass large deformation and their temporal variation are analysed. The results showed that the MS b-value in course of rock mass deformation was less than 1.0 in the underground powerhouse caverns at a high stress level while larger than 1.5 at a low stress level. Prior to the rock mass deformation, the MS b-values derived from both the high-stress and low-stress underground powerhouse caverns show an incremental decrease over 10% within 10 d. The results contribute to understanding the fracturing characteristics of MS sources associated with rock mass large deformation and provide a reference for early warning of rock mass large deformation in underground powerhouse caverns.

摘要

地下厂房洞室群围岩大变形已成为中国西南地区水电工程的严重灾害, 围岩大变形孕育过程中 将产生一系列的岩石破裂, 运用微震监测技术可监测到这些破裂信息。在地应力水平不同的两个典型 地下厂房洞室群构建精度微震监测系统, 分析了围岩大变形微震b 值及其时间变化特征。结果表明, 高地应力地下厂房洞室群围岩大变形过程微震b 值小于1.0, 而低地应力情况下微震b 值大于1.5。对于 高、低地应力地下厂房洞室群而言, 围岩大变形前十日内, 微震b 值均出现超过10%的下降。研究成 果有助于提高围岩大变形微震震源破裂特征的认识, 也可为地下厂房洞室群围岩大变形预警提供重要 参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LAI X P, CAI M F, XIE M W. In situ monitoring and analysis of rock mass behavior prior to collapse of the main transport roadway in Linglong Gold Mine, China [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 640–646. DOI: https://doi.org/10.1016/j.ijrmms.2005.09.015.

    Article  Google Scholar 

  2. LI Zhen-lei, DOU Lin-ming, WANG Gui-feng, et al. Risk evaluation of rock burst through theory of static and dynamic stresses superposition [J]. Journal of Central South University, 2015, 22(2): 676–683. DOI: https://doi.org/10.1007/s11771-015-2570-2.

    Article  Google Scholar 

  3. TANG Li-zhong, XIA K W. Seismological method for prediction of areal rockbursts in deep mine with seismic source mechanism and unstable failure theory [J]. Journal of Central South University of Technology, 2010, 17(5): 947–953. DOI: https://doi.org/10.1007/s11771-010-0582-5.

    Article  Google Scholar 

  4. MA K, TANG C A, WANG L X, et al. Stability analysis of underground oil storage Caverns by an integrated numerical and microseismic monitoring approach [J]. Tunnelling and Underground Space Technology, 2016, 54: 81–91. DOI: https://doi.org/10.1016/j.tust.2016.01.024.

    Article  Google Scholar 

  5. STORK A L, VERDON J P, KENDALL J M. The microseismic response at the in Salah Carbon Capture and Storage (CCS) site [J]. International Journal of Greenhouse Gas Control, 2015, 32: 159–171. DOI: https://doi.org/10.1016/j.ijggc.2014.11.014.

    Article  Google Scholar 

  6. CAI M, KAISER P K, MARTIN C D. Quantification of rock mass damage in underground excavations from microseismic event monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(8): 1135–1145. DOI: https://doi.org/10.1016/S1365-1609(01)00068-5.

    Article  Google Scholar 

  7. CAI M, KAISER P K. Assessment of excavation damaged zone using a micromechanics model [J]. Tunnelling and Underground Space Technology, 2005, 20(4): 301 -310. DOI: https://doi.org/10.1016/j.tust.2004.12.002.

    Article  Google Scholar 

  8. DAI Feng, LI Biao, XU Nu-wen, et al. Deformation forecasting and stability analysis of large-scale underground powerhouse Caverns from microseismic monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 269–281. DOI: https://doi.org/10.1016/j.ijrmms.2016.05.001.

    Article  Google Scholar 

  9. LI Biao, XU Nu-wen, DAI Feng, et al. Dynamic analysis of rock mass deformation in large underground Caverns considering microseismic data [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104078. DOI: https://doi.org/10.1016/j.ijrmms.2019.104078.

    Article  Google Scholar 

  10. MA Ke, TANG Chun-an, XU Nu-wen, et al. Failure precursor of surrounding rock mass around cross tunnel in high-steep rock slope [J]. Journal of Central South University, 2013, 20(1): 207–217. DOI: https://doi.org/10.1007/s11771-013-1478-y.

    Article  Google Scholar 

  11. FENG Guang-liang, FENG Xia-ting, CHEN Bing-rui, et al. Effects of structural planes on the microseismicity associated with rockburst development processes in deep tunnels of the Jinping-II Hydropower Station, China [J]. Tunnelling and Underground Space Technology, 2019, 84: 273–280. DOI: https://doi.org/10.1016/j.tust.2018.11.008.

    Article  Google Scholar 

  12. XU Nu-wen, TANG Chu-nan, LI Hong, et al. Excavation-induced microseismicity: Microseismic monitoring and numerical simulation [J]. Journal of Zhejiang University: Science A, 2012, 13(6): 445–460. DOI: https://doi.org/10.1631/jzus.a1100131.

    Article  Google Scholar 

  13. HUDYMA M, POTVIN Y H. An engineering approach to seismic risk management in hardrock mines [J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 891–906. DOI: https://doi.org/10.1007/s00603-009-0070-0.

    Article  Google Scholar 

  14. GUTENBERG B, RICHTER C F. Frequency of earthquakes in California [J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185–188. DOI: https://doi.org/10.1785/bssa0340040185.

    Article  Google Scholar 

  15. BORMANN P. Are new data suggesting a revision of the current M_w and M_e scaling formulas? [J]. Journal of Seismology, 2015, 19(4): 989–1002. DOI: https://doi.org/10.1007/s10950-015-9507-y.

    Article  Google Scholar 

  16. AKI K. Seismic displacements near a fault [J]. Journal of Geophysical Research, 1968, 73(16): 5359–5376. DOI: https://doi.org/10.1029/JB073i016p05359.

    Article  Google Scholar 

  17. ZHANG Peng-hai, YANG Tian-hong, YU Qing-lei, et al. Microseismicity induced by fault activation during the fracture process of a crown pillar [J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1673–1682. DOI: https://doi.org/10.1007/s00603-014-0659-9.

    Article  Google Scholar 

  18. WYSS M, SHIMAZAKI K, WIEMER S. Mapping active magma Chambers by b values beneath the off-Ito volcano, Japan [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B9): 20413–20422. DOI: https://doi.org/10.1029/97JB01074.

    Article  Google Scholar 

  19. AMELUNG F, KING G. Earthquake scaling laws for creeping and non-creeping faults [J]. Geophysical Research Letters, 1997, 24(5): 507–510. DOI: https://doi.org/10.1029/97GL00287.

    Article  Google Scholar 

  20. WIEMER S, MCNUTT S R, WYSS M. Temporal and three-dimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California [J]. Geophysical Journal International, 1998, 134(2): 409–421. DOI: https://doi.org/10.1046/j.1365-246x.1998.00561.x.

    Article  Google Scholar 

  21. SCHORLEMMER D, WIEMER S, WYSS M. Variations in earthquake-size distribution across different stress regimes [J]. Nature, 2005, 437(7058): 539–542. DOI: https://doi.org/10.1038/nature04094.

    Article  Google Scholar 

  22. WIEMER S, WYSS M. Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B7): 15115–15128. DOI: https://doi.org/10.1029/97JB00726.

    Article  Google Scholar 

  23. KHAN P K, CHAKRABORTY P P. The seismic b-value and its correlation with Bouguer gravity anomaly over the Shillong Plateau area: Tectonic implications [J]. Journal of Asian Earth Sciences, 2007, 29(1): 136–147. DOI: https://doi.org/10.1016/j.jseaes.2006.02.007.

    Article  Google Scholar 

  24. MOUSAVI S M. Mapping seismic moment and b-value within the continental-collision orogenic-belt region of the Iranian Plateau [J]. Journal of Geodynamics, 2017, 103: 26–41. DOI: https://doi.org/10.1016/j.jog.2016.12.001.

    Article  Google Scholar 

  25. BORA D K, BORAH K, MAHANTA R, et al. Seismic b-values and its correlation with seismic moment and Bouguer gravity anomaly over Indo-Burma ranges of northeast India: Tectonic implications [J]. Tectonophysics, 2018, 728–729: 130–141. DOI: https://doi.org/10.1016/j.tecto.2018.01.001.

    Article  Google Scholar 

  26. KULHANEK O, PERSSON L, NUANNIN P. Variations of b-values preceding large earthquakes in the shallow subduction zones of Cocos and Nazca plates [J]. Journal of South American Earth Sciences, 2018, 82: 207–214. DOI: https://doi.org/10.1016/j.jsames.2018.01.005.

    Article  Google Scholar 

  27. LEGGE N, SPOTTISWOODE S. Fracturing and microseismicity ahead of a deep gold mine stope in the pre-remnant and remnant stages of mining [C]// 6th ISRM Congress, Montreal, Canada, 1987: 2071 -1048.

  28. LIU Jian-po, FENG Xia-ting, LI Yuan-hui, et al. Studies on temporal and spatial variation of microseismic activities in a deep metal mine [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 171–179. DOI: https://doi.org/10.1016/j.ijrmms.2012.12.022.

    Article  Google Scholar 

  29. LU Cai-ping, LIU Guang-jian, LIU Yang, et al. Microseismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 18–32. DOI: https://doi.org/10.1016/j.ijrmms.2015.02.005.

    Article  Google Scholar 

  30. MA X, WESTMAN E, SLAKER B, et al. The b-value evolution of mining-induced seismicity and mainshock occurrences at hard-rock mines [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 64–70. DOI: https://doi.org/10.1016/j.ijrmms.2018.02.003.

    Article  Google Scholar 

  31. Ministry of Water Resources of the People’s Republic of China. GB50287-99. Code for water resource and hydropower engineering geological investigation [S]. 1999, 82p. (in Chinese)

  32. SJÖBERG J, CHRISTIANSSON R, HUDSON J A. ISRM suggested methods for rock stress estimation—Part 2: Overcoring methods [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7, 8): 999- 1010. DOI: https://doi.org/10.1016/j.ijrmms.2003.07.012.

    Article  Google Scholar 

  33. SUGAWARA K, OBARA Y. Draft ISRM suggested method for in situ stress measurement using the compact conical-ended borehole overcoring (CCBO) technique [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 307–322.

    Google Scholar 

  34. CHENG Li-juan, LI Zhi-guo, WANG Jin-sheng, WANG Dikai, XIA Xin. Design report on reinforcement measures for surrounding rock mass in underground group caverns of the Houziyan Hydropower Station along Dadu River [R]. HydroChina Chengdu Engineering Corporation, Chengdu, China, 2014: 1–163. (in Chinese)

    Google Scholar 

  35. STOCKWELL R G, MANSINHA L, LOWE R P. Localization of the complex spectrum: The S transform [J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998–1001. DOI: https://doi.org/10.1109/78.492555.

    Article  Google Scholar 

  36. HAIMSON B C, CORNET F H. ISRM Suggested Methods for rock stress estimation—Part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF) [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7, 8): 1011–1020. DOI: https://doi.org/10.1016/j.ijrmms.2003.08.002.

    Article  Google Scholar 

  37. ZHANG Cun-hui, LIU Hui-bo, ZHANG Ling-li. Stability evaluation and supports design optimization for surrounding rock mass in underground powerhouse caverns at the Wudongde Hydropower Station along Jinsha River [R]. Changjiang Institute of Survey, Planning, Design and Research, Wuhan, China, 2015: 57–61. (in Chinese)

    Google Scholar 

  38. LI Ang, XU Nu-wen, DAI Feng, et al. Stability analysis and failure mechanism of the steeply inclined bedded rock masses surrounding a large underground opening [J]. Tunnelling and Underground Space Technology, 2018, 77: 45–58. DOI: https://doi.org/10.1016/j.tust.2018.03.023.

    Article  Google Scholar 

  39. LI Ang, LIU Yi, DAI Feng, et al. Continuum analysis of the structurally controlled displacements for large-scale underground Caverns in bedded rock masses [J]. Tunnelling and Underground Space Technology, 2020, 97: 103288. DOI: https://doi.org/10.1016/j.tust.2020.103288.

    Article  Google Scholar 

  40. WOESSNER J. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty [J]. Bulletin of the Seismological Society of America, 2005, 95(2): 684–698. DOI: https://doi.org/10.1785/0120040007.

    Article  Google Scholar 

  41. GREENHOUGH J, MAIN I G. A Poisson model for earthquake frequency uncertainties in seismic hazard analysis [J]. Geophysical Research Letters, 2008, 35(19): L19313. DOI: https://doi.org/10.1029/2008GL035353.

    Article  Google Scholar 

  42. LIU Xi-ling, HAN Meng-si, HE Wei, et al. A new b value estimation method in rock acoustic emission testing [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB019658. DOI: https://doi.org/10.1029/2020JB019658.

    Google Scholar 

  43. XU Yuan, DAI Feng. Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments [J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 747–764. DOI: https://doi.org/10.1007/s00603-017-1364-2.

    Article  MathSciNet  Google Scholar 

  44. LIU Yi, DAI Feng, DONG Lu, et al. Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 47–68. DOI: https://doi.org/10.1007/s00603-017-1327-7.

    Article  Google Scholar 

  45. FENG Guang-liang, FENG Xia-ting, CHEN Bing-rui, et al. Characteristics of microseismicity during breakthrough in deep tunnels: Case study of Jinping-II hydropower station in China [J]. International Journal of Geomechanics, 2020, 20(2): 04019163. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0001574.

    Article  Google Scholar 

  46. XU Y, DAI F, XU N W, et al. Numerical investigation of dynamic rock fracture toughness determination using a semicircular bend specimen in split Hopkinson pressure bar testing [J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 731–745. DOI: https://doi.org/10.1007/s00603-015-0787-x.

    Article  MathSciNet  Google Scholar 

  47. DONG Long-jun, WESSELOO J, POTVIN Y, et al. Discrimination of mine seismic events and blasts using the fisher classifier, naive Bayesian classifier and logistic regression [J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 183–211. DOI: https://doi.org/10.1007/s00603-015-0733-y.

    Article  Google Scholar 

  48. DONG Long-jun, ZOU Wei, LI Xi-bing, et al. Collaborative localization method using analytical and iterative solutions for microseismic/acoustic emission sources in the rockmass structure for underground mining [J]. Engineering Fracture Mechanics, 2019, 210: 95–112. DOI: https://doi.org/10.1016/j.engfracmech.2018.01.032.

    Article  Google Scholar 

Download references

Funding

Projects(51809221, 51679158) supported by the National Natural Science Foundation of China; Project(KFJJ20-06M) supported by the State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology), China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xu  (许媛).

Additional information

Contributors

LI Biao conducted the literature review and wrote the first draft of the manuscript. DING Quanfu processed the monitoring data. Nu-wen XU edited the draft of the manuscript. DAI Feng developed the overarching research goals. XU Yuan analysed the b-value characteristics and edited the draft of the manuscript. QU Hong-lue summarized geological information of the engineering. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

LI Biao, DING Quan-fu, XU Nu-wen, DAI Feng, XU Yuan, QU Hong-lue declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Ding, Qf., Xu, Nw. et al. Characteristics of microseismic b-value associated with rock mass large deformation in underground powerhouse caverns at different stress levels. J. Cent. South Univ. 29, 693–711 (2022). https://doi.org/10.1007/s11771-022-4946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4946-4

Key words

关键词

Navigation