Skip to main content
Log in

Engineering properties and microstructure of expansive soil treated with nanographite powder

纳米石墨粉改性膨胀土的工程特性及微观结构

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To reduce geological disasters caused by expansive soil, it is crucial to use a new type of modified material to rapidly improve soil strength instead of traditional soil improvement materials such as lime and cement. Nanographite powder (NGP) has excellent properties, such as high adsorption, conductivity, and lubrication, since it has the characteristics of small size, large specific surface area, and high surface energy. However, previous studies on the improvement of expansive soil with NGP are not processed enough. To study the improvement effect of NGP on expansive soil, non-load swelling ratio tests, consolidation tests, unconfined compressive strength tests, mercury injection tests, and micro-CT tests on expansive soil mixed with different NGP contents were performed. The results show that the non-load swelling ratio, mechanical properties, and porosity of expansive soil show some increasement after adding NGP. The strength of expansive soil reaches the maximum when the NGP content is 1.450%. The cumulative mercury volume and compressive strain of expansive soil reach the maximum with the 2.0% NGP content. Finally, the modification mechanism of swelling, compressibility, microstructure, and compressive strength of expansive soil by NGP is revealed.

摘要

为了减少膨胀土引起的地质灾害, 使用一种新型材料代替石灰、水泥等传统的土体改性材料, 并快速提高土体强度至关重要。纳米石墨粉(NGP)具有体积小、比表面积大、表面能高等特点, 因此 具备了高吸附性、高导电性、高润滑性等优异性能。然而, 关于NGP改良膨胀土的研究还不够深入。 为研究NGP对膨胀土的改性效果, 对掺入不同含量NGP的膨胀土进行了无荷载膨胀率试验、固结试 验、无侧限抗压强度试验、压汞试验和微CT试验。结果表明, 掺入不同含量的NGP后, 膨胀土的无 荷载膨胀率、力学性质和孔隙率均有不同程度的提高。当NGP含量为1.450%时, 膨胀土的强度达到 最大值。当NGP掺量为2.0%时, 膨胀土的孔隙累计进汞体积和压缩应变达到最大值。最后, 揭示了 NGP对膨胀土的膨胀性、压缩性、微观结构和抗压强度的改性机理。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TIWARI N, SATYAM N. An experimental study on the behavior of lime and silica fume treated coir geotextile reinforced expansive soil subgrade [J]. Engineering Science and Technology: An International Journal, 2020, 23(5): 1214–1222. DOI: https://doi.org/10.1016/j.jestch.2019.12.006.

    Google Scholar 

  2. BODNER G, SCHOLL P, KAUL H P. Field quantification of wetting-drying cycles to predict temporal changes of soil pore size distribution [J]. Soil and Tillage Research, 2013, 133: 1–9. DOI: https://doi.org/10.1016/j.still.2013.05.006.

    Article  Google Scholar 

  3. LI Jie, CAMERON D A, REN Gang. Case study and back analysis of a residential building damaged by expansive soils [J]. Computers and Geotechnics, 2014, 56: 89–99. DOI: https://doi.org/10.1016/j.compgeo.2013.11.005.

    Article  Google Scholar 

  4. NELSON J, MILLER D J. Expansive soils: Problems and practice in foundation and pavement engineering [M]. John Wiley & Sons, 1997.

  5. MATHEWSON C C. Expansive soils, engineering geology [J]. General Geology, 1988, 7: 114–119. DOI: https://doi.org/10.1007/0-387-30844-X_25.

    Article  Google Scholar 

  6. HORPIBULSUK S, RACHAN R, RAKSACHON Y. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay [J]. Soils and Foundations, 2009, 49(1): 85–98. DOI: https://doi.org/10.3208/sandf.49.85.

    Article  Google Scholar 

  7. JHA A K, SIVAPULLAIAH P V. Mechanism of improvement in the strength and volume change behavior of lime stabilized soil [J]. Engineering Geology, 2015, 198: 53–64. DOI: https://doi.org/10.1016/j.enggeo.2015.08.020.

    Article  Google Scholar 

  8. LIN B, CERATO A B, MADDEN A S, et al. Effect of fly ash on the behavior of expansive soils: Microscopic analysis [J]. Environmental & Engineering Geoscience, 2013, 19(1): 85–94. DOI: https://doi.org/10.2113/gseegeosci.19.1.85.

    Article  Google Scholar 

  9. IJAZ N, DAI Fu-chu, MENG Ling-chao, et al. Integrating lignosulphonate and hydrated lime for the amelioration of expansive soil: A sustainable waste solution [J]. Journal of Cleaner Production, 2020, 254: 119985. DOI: https://doi.org/10.1016/j.jclepro.2020.119985.

    Article  Google Scholar 

  10. LI Jia-yan, WANG Jin-man. Integrated life cycle assessment of improving saline-sodic soil with flue gas desulfurization gypsum [J]. Journal of Cleaner Production, 2018, 202: 332–341. DOI: https://doi.org/10.1016/j.jclepro.2018.08.062.

    Article  Google Scholar 

  11. VARAPRASAD B J S, JAYAPRAKASH REDDY J, SURYAPRAKASH REDDY J. Exploratory study on Argo-industrial wastes for improving geotechnical properties of expansive soil — As sustainable material [J]. Materials Today: Proceedings, 2021, 45: 6665–6673. DOI: https://doi.org/10.1016/j.matpr.2020.12.078.

    Google Scholar 

  12. RAFALKO S D, FILZ G M, BRANDON T L, et al. Rapid chemical stabilization of soft clay soils [J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2026(1): 39–46. DOI: https://doi.org/10.3141/2026-05.

    Article  Google Scholar 

  13. MENGUE E, MROUEH H, LANCELOT L, et al. Evaluation of the compressibility and compressive strength of a compacted cement treated laterite soil for road application [J]. Geotechnical and Geological Engineering, 2018, 36(6): 3831–3856. DOI: https://doi.org/10.1007/s10706-018-0576-x.

    Article  Google Scholar 

  14. INDIRAMMA P, SUDHARANI C, NEEDHIDASAN S. Utilization of fly ash and lime to stabilize the expansive soil and to sustain pollution free environment — An experimental study [J]. Materials Today: Proceedings, 2020, 22: 694–700. DOI: https://doi.org/10.1016/j.matpr.2019.09.147.

    Google Scholar 

  15. KHADKA S D, JAYAWICKRAMA P W, SENADHEERA S, et al. Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum [J]. Transportation Geotechnics, 2020, 23: 100327. DOI: https://doi.org/10.1016/j.trgeo.2020.100327.

    Article  Google Scholar 

  16. LATIFI N, MARTO A, EISAZADEH A. Physicochemical behavior of tropical laterite soil stabilized with non-traditional additive [J]. Acta Geotechnica, 2016, 11(2): 433–443. DOI: https://doi.org/10.1007/s11440-015-0370-3.

    Article  Google Scholar 

  17. QIAO Guo-gang, YUAN Da-jun, LIU Bo. Experimental research on the engineering properties of foam-improved red clay soil [J]. Advanced Materials Research, 2011, 261–263: 1831–1835. DOI: https://doi.org/10.4028/www.scientific.net/amr.261-263.1831.

    Article  Google Scholar 

  18. JOZEFACIUK G, CZACHOR H. Impact of organic matter, iron oxides, alumina, silica and drying on mechanical and water stability of artificial soil aggregates. Assessment of new method to study water stability [J]. Geoderma, 2014, 221–222: 1–10. DOI: https://doi.org/10.1016/j.geoderma.2014.01.020.

    Article  Google Scholar 

  19. ZHANG Mo, ZHAO Meng-xuan, ZHANG Guo-ping, et al. Calcium-free geopolymer as a stabilizer for sulfate-rich soils [J]. Applied Clay Science, 2015, 108: 199–207. DOI: https://doi.org/10.1016/j.clay.2015.02.029.

    Article  Google Scholar 

  20. ATAHU M K, SAATHOFF F, GEBISSA A. Strength and compressibility behaviors of expansive soil treated with coffee husk ash [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(2): 337–348. DOI: https://doi.org/10.1016/j.jrmge.2018.11.004.

    Article  Google Scholar 

  21. LIU Yu-yi, CHANG C W, NAMDAR A, et al. Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue [J]. Construction and Building Materials, 2019, 221: 1–11. DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.157.

    Article  Google Scholar 

  22. SELVAKUMAR S, SOUNDARA B. Swelling behaviour of expansive soils with recycled geofoam granules column inclusion [J]. Geotextiles and Geomembranes, 2019, 47(1): 1–11. DOI: https://doi.org/10.1016/j.geotexmem.2018.08.007.

    Article  Google Scholar 

  23. MENG Tao, QIANG Ye-jia, HU An-feng, et al. Effect of compound nano-CaCO3 addition on strength development and microstructure of cement-stabilized soil in the marine environment [J]. Construction and Building Materials, 2017, 151: 775–781. DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.016.

    Article  Google Scholar 

  24. YAO Kai, WANG Wei, LI Na, et al. Investigation on strength and microstructure characteristics of nano-MgO admixed with cemented soft soil [J]. Construction and Building Materials, 2019, 206: 160–168. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.221.

    Article  Google Scholar 

  25. CHEN Yong-zhan, ZHOU Wan-huan, LIU Fu-ming, et al. Microstructure and morphological characterization of lead-contaminated clay with nanoscale zero-valent iron (nZVI) treatment [J]. Engineering Geology, 2019, 256: 84–92. DOI: https://doi.org/10.1016/j.enggeo.2019.05.001.

    Article  Google Scholar 

  26. WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material [J]. PNAS, 1921, 7(4): 115–116. DOI: https://doi.org/10.1073/pnas.7.4.115.

    Article  Google Scholar 

  27. ZHENG Lian-ge, RUTQVIST J, LIU Hui-hai, et al. Model evaluation of geochemically induced swelling/shrinkage in argillaceous formations for nuclear waste disposal [J]. Applied Clay Science, 2014, 97–98: 24–32. DOI: https://doi.org/10.1016/j.clay.2014.05.019.

    Article  Google Scholar 

  28. LIKOS W J, LU Ning. Pore-scale analysis of bulk volume change from crystalline interlayer swelling in Na+- and Ca2+-smectite [J]. Clays and Clay Minerals, 2006, 54(4): 515–528. DOI: https://doi.org/10.1346/CCMN.2006.0540412.

    Article  Google Scholar 

  29. TAN Luo-rong, KONG Ling-wei. Engineering behavior of special rock and soil [M]. Beijing: Science Press, 2006. (in Chinese)

    Google Scholar 

  30. LAIRD D A. Influence of layer charge on swelling of smectites [J]. Applied Clay Science, 2006, 34(1–4): 74–87. DOI: https://doi.org/10.1016/j.clay.2006.01.009.

    Article  Google Scholar 

  31. ZHAO Cheng-gang, BAI Bing. Fundamentals of soil mechanics [M]. Beijing: Beijing Jiaotong University Press, 2009. (in Chinese)

    Google Scholar 

  32. WEN Chao, JIN Zhi-hao, LIU Xiao-xin, et al. Synthesis of diamond using nano-graphite and Fe powder under high pressure and high temperature [J]. Materials Letters, 2006, 60(29, 30): 3507–3510. DOI: https://doi.org/10.1016/j.matlet.2006.03.039.

    Article  Google Scholar 

  33. PENG Zan, LIU Xiao-juan, ZHANG Wei, et al. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review [J]. Environment International, 2020, 134: 105298. DOI: https://doi.org/10.1016/j.envint.2019.105298.

    Article  Google Scholar 

  34. ALMEIDA J C, CARDOSO C E D, TAVARES D S, et al. Chromium removal from contaminated waters using nanomaterials — A review [J]. TrAC Trends in Analytical Chemistry, 2019, 118: 277–291. DOI: https://doi.org/10.1016/j.trac.2019.05.005.

    Article  Google Scholar 

  35. PÉREZ S, FARRÉ M L, BARCELÓ D. Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment [J]. TrAC Trends in Analytical Chemistry, 2009, 28(6): 820–832. DOI: https://doi.org/10.1016/j.trac.2009.04.001.

    Article  Google Scholar 

  36. THINES R K, MUBARAK N M, NIZAMUDDIN S, et al. Application potential of carbon nanomaterials in water and wastewater treatment: A review [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72: 116–133. DOI: https://doi.org/10.1016/j.jtice.2017.01.018.

    Article  Google Scholar 

  37. OTÁLVARO I F, NETO M P C, CAICEDO B. Compressibility and microstructure of compacted laterites [J]. Transportation Geotechnics, 2015, 5: 20–34. DOI: https://doi.org/10.1016/j.trgeo.2015.09.005.

    Article  Google Scholar 

  38. LIN Bo-tao, CERATO A B. Applications of SEM and ESEM in microstructural investigation of shale-weathered expansive soils along swelling-shrinkage cycles [J]. Engineering Geology, 2014, 177: 66–74. DOI: https://doi.org/10.1016/j.enggeo.2014.05.006.

    Article  Google Scholar 

  39. MONTES-H G, DUPLAY J, MARTINEZ L, et al. Swelling-shrinkage kinetics of MX80 bentonite [J]. Applied Clay Science, 2003, 22(6): 279–293. DOI: https://doi.org/10.1016/S0169-1317(03)00120-0.

    Article  Google Scholar 

  40. BAKER J C, GRABOWSKA-OLSZEWSKA B, UWINS P J R. ESEM study of osmotic swelling of bentonite from Radzionkow (Poland) [J]. Applied Clay Science, 1995, 9(6): 465–469. DOI: https://doi.org/10.1016/0169-1317(95)00002-L.

    Article  Google Scholar 

  41. ANWAR A, MOHAMMED B S, WAHAB M A, et al. Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial — A review [J]. Developments in the Built Environment, 2020, 1: 100002. DOI: https://doi.org/10.1016/j.dibe.2019.100002.

    Article  Google Scholar 

  42. GHASABKOLAEI N, JANALIZADEH C A, ROSHAN N, et al. Geotechnical properties of the soils modified with nanomaterials: A comprehensive review [J]. Archives of Civil and Mechanical Engineering, 2017, 17(3): 639–650. DOI: https://doi.org/10.1016/j.acme.2017.01.010.

    Article  Google Scholar 

Download references

Funding

Project(2017TFC1503102) supported by the National Key Research and Development Project, China; Projects (51874065, U1903112) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-bin Tang  (唐世斌).

Additional information

Contributors

LI Jia-ming conducted the literature review and wrote the first draft of manuscript. TANG Shi-bin provided the concept and edited the draft of manuscript. SONG Huai-bo and CHEN Xue-jun reviewed and modified the manuscript.

Conflict of interest

LI Jia-ming, TANG Shi-bin, SONG Huai-bo and CHEN Xue-jun declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jm., Tang, Sb., Song, Hb. et al. Engineering properties and microstructure of expansive soil treated with nanographite powder. J. Cent. South Univ. 29, 499–514 (2022). https://doi.org/10.1007/s11771-022-4904-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4904-1

Key words

关键词

Navigation