Skip to main content
Log in

Locating microseismic sources based upon L-shaped single-component geophone array: A synthetic study

基于L 形单分量检波器组合台站的微地震震源精定位方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

We have developed a type of L-shaped single-component geophone array as a single station (L-array station) for surface microseismic monitoring. The L-array station consists of two orthogonal sensor arrays, each being a linear array of single-component sensors. L-array stations can be used to accurately estimate the polarization of first arrivals without amplitude picking. In a synthetic example, we first use segmentally iterative ray tracing (SIRT) method and forward model to calculate the travel time and polarization of first arrivals at a set of L-array stations. Then, for each L-array station, the relative delay times of first arrivals along sensor arrays are used to estimate the polarization vector. The small errors in estimated polarization vectors show the reliability and robustness of polarization estimation based on L-array stations. We then use reverse-time ray-tracing (RTRT) method to locate the source position based on estimated polarizations at a set of L-array stations. Very small errors in inverted source location and origin time indicate the great potential of L-array stations for source localization applications in surface microseismic monitoring.

摘要

本文研究了基于L 形单分量检波器组合作为单个地震观测台时的微地震震源定位方法。首先, 介绍方法的实施过程, 包括利用两条相互正交的单分量检波器线性排列组合作为单个台站采集连续地 震资料, 利用速度扫描方法分析两正交检波器排列中直达P 波视速度, 根据近地表速度进一步求解直 达P 波的出射矢量及利用逆时射线追踪震源定位方法求解微地震震源位置。然后, 基于数值模拟研究 L 型检波器台站观测下微地震震源精定位方法的准确性及精度高, 结果表明可准确获取各台站直达P 波射线矢量并精准确定震源位置。最后, 分析了噪声对定位结果的影响, 结果表明, 噪声下仍可有效 获取检波器排列的直达P 波射线矢量, 对定位结果影响小。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MAGOTRA N, AHMED N, CHAEL E. Single-station seismic event detection and location [J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(1): 15–23. DOI: https://doi.org/10.1109/36.20270.

    Article  Google Scholar 

  2. BAYER B, KIND R, HOFFMANN M, YUAN X, MEIER T. Tracking unilateral earthquake rupture by P-wave polarization analysis [J]. Geophysical Journal International, 2012, 188(3): 1141–1153. DOI: https://doi.org/10.1111/j.1365-246X.2011.05304.x.

    Article  Google Scholar 

  3. HIRABAYASHI N. Real-time event location using model-based estimation of arrival times and back azimuths of seismic phases [J]. Geophysics, 2016, 81(2): KS25–KS40. DOI: https://doi.org/10.1190/geo2014-0357.1.

    Article  Google Scholar 

  4. DING Liang, GAO Er-gen, LIU Qin-ya, QIAN Wei, LIU Dong-dong, YANG Chi. Reverse-time ray-tracing method for microseismic source localization [J]. Geophysical Journal International, 2018, 214(3): 2053–2072. DOI: https://doi.org/10.1093/GJI/GGY256.

    Article  Google Scholar 

  5. PARK S, ISHII M. Detection of instrument gain problems based on body-wave polarization: Application to the Hi-Net array [J]. Seismological Research Letters, 2019, 90(2A): 692–698. DOI: https://doi.org/10.1785/0220180252.

    Article  Google Scholar 

  6. PARK S, TSAI V C, ISHII M. Frequency-dependent p wave polarization and its subwavelength near-surface depth sensitivity [J]. Geophysical Research Letters, 2019, 46(24): 14377–14384. DOI: https://doi.org/10.1029/2019GL084892.

    Article  Google Scholar 

  7. XU Guo-ming, ZHOU Hui-lan. Priciples of seismology [M]. Beijing: Science Press, 1982. (in Chinese)

    Google Scholar 

  8. VIDALE J E. Complex polarization analysis of particle motion [J]. Bulletin of the Seismological Society of America, 1986, 76(5): 1393–1405.

    Google Scholar 

  9. ROST S, THOMAS C. Array seismology: Methods and applications [J]. Reviews of Geophysics, 2002, 40(3): 1008. DOI: https://doi.org/10.1029/2000RG000100.

    Article  Google Scholar 

  10. SHEARER P M. Introduction to seismology [M]. 2nd Ed. Cambridge: Cambridge University Press, 2009, DOI: https://doi.org/10.1016/B978-0-444-56375-0.00020-7.

    Book  Google Scholar 

  11. PARK S, ISHII M. Near-surface compressional and shear wave speeds constrained by body-wave polarisation analysis [J]. Geophysical Journal International, 2018, 213: 1559–1571. DOI: https://doi.org/10.1093/gji/ggy072.

    Article  Google Scholar 

  12. ANANT K S, DOWLA F U. Wavelet transform methods for phase identification in three-component seismograms [J]. Bulletin of the Seismological Society of America, 1997, 87(6): 1598–1612.

    MathSciNet  Google Scholar 

  13. GALIANA-MERINO J J, ROSA-HERRANZ J, JÂREGUI P, MOLINA S, GINER J. Wavelet transform methods for azimuth estimation in local three-component seismograms [J]. Bulletin of the Seismological Society of America, 2007, 97(3): 793–803. DOI: https://doi.org/10.1785/0120050225.

    Article  Google Scholar 

  14. OHTA K, ITO Y, HINO R, OHYANAGI S, MATSUZAWA T, SHIOBARA H, SHINOHARA M. Tremor and inferred slow slip associated with afterslip of the 2011 Tohoku earthquake [J]. Geophysical Research Letters, 2019, 46(9): 4591–4598. DOI: https://doi.org/10.1029/2019GL082468.

    Article  Google Scholar 

  15. D’AURIA L, GIUDICEPIETRO F, MARTINI M, ORAZI M, PELUSO R, SCARPATO G. Polarization analysis in the discrete wavelet domain: An application to volcano seismology [J]. Bulletin of the Seismological Society of America, 2010, 100(2): 670–683. DOI: https://doi.org/10.1785/0120090166.

    Article  Google Scholar 

  16. DAVIES D, KELLY E J, FILSON J R. Vespa process for analysis of seismic signals [J]. Nature Physical Science, 1971, 232(27): 8–13. DOI: https://doi.org/10.1038/physci232008a0.

    Article  Google Scholar 

  17. WAGNER D E, EHLERS J W, VEEZHINATHAN J. First break picking using neural networks [C]// SEG Technical Program Expanded Abstracts 1990, 2005: 370–373. DOI: https://doi.org/10.1190/1.1890201.

    Google Scholar 

  18. LA ROCCA M, GALLUZZO D, MALONE S, MCCAUSLAND W, DEL PEZZO E. Array analysis and precise source location of deep tremor in Cascadia [J]. Journal of Geophysical Research: Solid Earth, 2010, 115(6): B00A20. DOI: https://doi.org/10.1029/2008JB006041.

    Google Scholar 

  19. CRISTIANO L, MEIER T, KRÜGER F, KEERS H, WEIDLE C. Teleseismic P-wave polarization analysis at the Gräfenberg array [J]. Geophysical Journal International, 2016, 207(3): 1456–1471. DOI: https://doi.org/10.1093/gji/ggw339.

    Article  Google Scholar 

  20. ROSS Z E, MEIER M A, HAUKSSON E. P wave arrival picking and first-motion polarity determination with deep learning [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 5120–5129. DOI: https://doi.org/10.1029/2017JB015251.

    Google Scholar 

  21. JURKEVICS A. Polarization analysis of three-component array data [J]. Bulletin-Seismological Society of America, 1988, 78(5): 1725–1743.

    Google Scholar 

  22. FOSTER A, EKSTRÖM G, HJÖRLEIFSDÖTTIR V. Arrival-angle anomalies across the USArray transportable array [J]. Earth and Planetary Science Letters, 2014, 402(C): 58–68. DOI: https://doi.org/10.1016/j.epsl.2013.12.046.

    Article  Google Scholar 

  23. ROUX P F, KOSTADINOVIC J, BARDAINNE T, REBEL E, CHMIEL M, VAN PARYS M, MACAULT R, PIGNOT L. Increasing the accuracy of microseismic monitoring using surface patch arrays and a novel processing approach [J]. First Break, 2014, 32(7): 95–101.

    Google Scholar 

  24. GERSTOFT P, TANIMOTO T. A year of microseisms in southern California [J]. Geophysical Research Letters, 2007, 34(20): 2–7. DOI: https://doi.org/10.1029/2007GL031091.

    Article  Google Scholar 

  25. ISHII M, SHEARER P M, HOUSTON H, VIDALE J E. Sumatra earthquake ruptures using the Hi-net array [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(11): B11307. DOI: https://doi.org/10.1029/2006JB004700.

    Article  Google Scholar 

  26. CHAMBERS K, KENDALL J M, BRANDSBERG-DAHL S, RUEDA J. Testing the ability of surface arrays to monitor microseismic activity [J]. Geophysical Prospecting, 2010, 58(5): 821–830. DOI: https://doi.org/10.1111/j.1365-2478.2010.00893.x.

    Article  Google Scholar 

  27. DUNCAN P M, EISNER L. Reservoir characterization using surface microseismic monitoring [J]. Geophysics, 2010, 75(5): 75A139–75A146. DOI: https://doi.org/10.1190/1.3467760.

    Article  Google Scholar 

  28. VLČEK J, FISCHER T, VILHELM J. Back-projection stacking of P- and S-waves to determine location and focal mechanism of microseismic events recorded by a surface array [J]. Geophysical Prospecting, 2016, 64(6): 1428–1440. DOI: https://doi.org/10.1111/1365-2478.12349.

    Article  Google Scholar 

  29. WITTEN B, SHRAGGE J C. Improved microseismic event locations through large-N arrays and wave-equation imaging and inversion [C]// American Geophysical Union, Fall General Assembly 2016. abstract id. S31B-2761., 2016.

  30. LI Ze-feng, PENG Zhi-gang, ZHU Li-jun, MCCLELLAN J. High-resolution microseismic detection and location using Large-N arrays [C]// 2017 Workshop: Microseismic Technologies and Applications. Hefei, 2017: 59–63. DOI: https://doi.org/10.1190/microseismic2017-015.

  31. AUGER E, SCHISSELÉ-REBEL E, JIA J. Suppressing noise while preserving signal for surface microseismic monitoring: The case for the patch design [G]// SEG Technical Program Expanded Abstracts, 2013: 2024–2028. DOI: https://doi.org/10.1190/segam2013-1396.1.

  32. SHERIFF R E, GELDART L P. Exploration seismology [M]. Cambridge: Cambridge University Press, 1995. DOI: https://doi.org/10.1017/CBO9781139168359.

    Book  Google Scholar 

  33. YILMAZ Ö. Seismic data analysis: Processing, inversion, and interpretation of seismic data [M]. Istanbul, Turkey, 2001. DOI: https://doi.org/10.1190/1.9781560801580.

  34. GIBBONS S J. The applicability of incoherent array processing to IMS seismic arrays [J]. Pure and Applied Geophysics, 2014, 171(3–5): 377–394. DOI: https://doi.org/10.1007/s00024-012-0613-2.

    Article  Google Scholar 

  35. HICKS E C, BUNGUM H, RINGDAL F. Earthquake location accuracies in Norway based on a comparison between local and regional networks [J]. Pure and Applied Geophysics, 2001, 158(1, 2): 129–141. DOI: https://doi.org/10.1007/PL00001152.

    Article  Google Scholar 

  36. LI Hong-yi, ZHU Lu-pei. Locating small aftershocks using a small-aperture temporary seismic array [J]. Pure and Applied Geophysics, 2011, 168(10): 1707–1714. DOI: https://doi.org/10.1007/s00024-010-0213-y.

    Article  Google Scholar 

  37. LI Bo, GHOSH A. Imaging rupture process of the 2015 Mw 8.3 illapel earthquake using the US seismic array [J]. Pure and Applied Geophysics, 2016, 173(7): 2245–2255. DOI: https://doi.org/10.1007/s00024-016-1323-y.

    Article  Google Scholar 

  38. ROSS M P, VENKATESWARA K, HAGEDORN C A, GUNDLACH J H, KISSEL J S, WARNER J, RADKINS H, SHAFFER T J, COUGHLIN M W, BODIN P. Low frequency tilt seismology with a precision ground rotation sensor [J]. Seismological Research Letters, 2017, 89(1): 1–14. DOI: https://doi.org/10.1785/0220170148.

    Google Scholar 

  39. HUA Y, SARKAR T K, WEINER D D. An L-shaped array for estimating 2-D directions of wave arrival [J]. IEEE Transactions on Antennas and Propagation, 1991, 39(2): 143–146. DOI: https://doi.org/10.1109/8.68174.

    Article  Google Scholar 

  40. LIANG Jun-li, ZENG Xian-ju, WANG Wen-yi, CHEN Hong-yang. L-shaped array-based elevation and azimuth direction finding in the presence of mutual coupling [J]. Signal Processing, 2011, 91(5): 1319–1328. DOI: https://doi.org/10.1016/j.sigpro.2010.12.001.

    Article  MATH  Google Scholar 

  41. GU Jian-feng, ZHU Wei-ping, SWAMY M N S. Joint 2-D DOA estimation via sparse L-shaped array [J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171–1182. DOI: https://doi.org/10.1109/TSP.2015.2389762.

    Article  MathSciNet  MATH  Google Scholar 

  42. KRÜGER F, WEBER M. The effect of low velocity sediments on the mislocation vectors of the GRF array [J]. Geophysical Journal International, 1992, 108(1): 387–393. DOI: https://doi.org/10.1111/j.1365-246X.1992.tb00866.x.

    Article  Google Scholar 

  43. GAO Er-gen, XU Guo-ming, JIANG Xian-yi, LUO Kai-yun, LIU Tong-qing, XIE Duan, SHI Jin-liang. Iterative ray-tracing method segment by segment under 3-D construction [J]. Oil Geophysical Prospecting, 2002, 37(1): 11.

    Google Scholar 

  44. GAO Er-gen, HAN Uk, TENG Ji-wen. Fast ray tracing method in 3-D structure and its proof of positive definiteness [J]. Journal of Central South University of Technology, 2007, 14(1): 100–103. DOI: https://doi.org/10.1007/s11771-007-0020-5.

    Article  Google Scholar 

  45. GAO Er-gen, ZHANG An-jia, HAN Uk, SONG Shu-yun, ZHAI Yong-bo. Fast algorithm and numerical simulation for ray-tracing in 3D structure [J]. Journal of Central South University of Technology, 2008, 15(6): 901–905. DOI: https://doi.org/10.1007/s11771-008-0164-y.

    Article  Google Scholar 

  46. XU Tao, XU Guo-ming, GAO Er-gen, LI Ying-chun, JIANG Xian-yi, LUO Kai-yun. Block modeling and segmentally iterative ray tracing in complex 3D media [J]. Geophysics, 2006, 71(3): T41–T51. DOI: https://doi.org/10.1190/1.2192948.

    Article  Google Scholar 

  47. XU Tao, ZHANG Zhong-jie, GAO Er-gen, XU Guo-ming, SUN Lian. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous block models [J]. Bulletin of the Seismological Society of America, 2010, 100(2): 841–850. DOI: https://doi.org/10.1785/0120090155.

    Article  Google Scholar 

  48. XU Tao, LI Fei, WU Zhen-bo, WU Cheng-long, GAO Er-gen, ZHOU Bing, ZHANG Zhong-jie, XU Guo-ming. A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models [J]. Tectonophysics, 2014, 627: 72–81. DOI: https://doi.org/10.1016/j.tecto.2014.02.012.

    Article  Google Scholar 

  49. TROJANOWSKI J, EISNER L. Comparison of migration-based location and detection methods for microseismic events [J]. Geophysical Prospecting, 2017, 65(1): 47–63. DOI: https://doi.org/10.1111/1365-2478.12366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Ding  (丁亮).

Additional information

Foundation item

Project(KYCX17_0500) supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China; Projects(2013/B17020664X, 2014B17614) supported by the Fundamental Research Funds for the Central Universities, China; Project(41174043) supported by the National Natural Science Foundation of China; Project supported by the Funds from China Scholarship Council (CSC); Project(487237) supported by the NSERC Discovery Grant for LIU Qin-ya

Contributors

DING Liang conducted the study and edited the draft of manuscript. LIU Qin-ya helped to revise the draft of manuscript. GAO Er-gen provided suggestions on source localization. SUN Shou-cai presented the idea of the velocity scanning. QIAN Wei helped to conduct the numerical test.

Conflict of interest

DING Liang, LIU Qin-ya, GAO Er-gen, QIAN Wei and SUN Shou-cai declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Liu, Qy., Gao, Eg. et al. Locating microseismic sources based upon L-shaped single-component geophone array: A synthetic study. J. Cent. South Univ. 27, 2711–2725 (2020). https://doi.org/10.1007/s11771-020-4493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4493-9

Key words

关键词

Navigation