Skip to main content
Log in

Dynamic response and failure of rock in initial gradient stress field under stress wave loading

应力波加载下含梯度应力场岩体的动力响应与破坏特征

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Once an opening is created in deep underground, the stresses surrounding the opening will be redistributed, inducing a gradient stress field. To understand how the ground rock in such a gradient stress field responses to dynamic stress loading, the gradient stress distribution at a circular opening was first analyzed and the propagation of 1D stress wave in rock mass under gradient stress field was theoretically derived. By using an implicit to explicit solution method in LS-DNA code, the dynamic mechanical behaviors of rock in gradient stress field were numerically investigated. The results indicate that the damage is mainly produced at or near the free face, partly due to the straight action of compressive stress wave and the tensile stress wave generated at the free face. The range of the induced damage zone is narrowed under the conditions of higher gradient stress rate and lower dynamic stress amplitude. However, under lower gradient stress field and higher dynamic stress, the damage becomes severer and wider with discontinuous failure regions.

摘要

深部岩体开挖后, 受应力重分布的影响, 临空面附近的岩体处于梯度应力状态。为研究含梯度 应力场岩体的动态力学响应特征, 首先对圆形硐室的梯度应力分布规律进行分析, 从理论上推导出梯 度应力场岩体在一维应力波作用下的波动方程。通过LS-DYNA 程序的隐式-显式连续计算方法, 对梯 度应力场岩体的动力响应行为进行模拟研究。结果表明, 在岩体受压缩应力波和反射拉伸波共同作用 下, 岩体的损伤主要发生在自由面附近。数值模拟结果表明, 更高的应力梯度率以及更小的应力波幅 值导致损伤区范围更小。然而, 在较小的梯度应力场以及较强的应力波加载下, 岩体损伤更严重, 范 围更广, 并且会产生非连续破坏的现象。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Shao-feng, LI Xi-bing, DU Ku, WANG Shan-yong, TAO Ming. Experimental study of the triaxial strength properties of hollow cylindrical granite specimens under coupled external and internal confining stresses [J]. Rock Mechanics and Rock Engineering, 2018, 51: 2015–2031. DOI: 10.1007/s00603-018-1452-y.

    Article  Google Scholar 

  2. WU Qiu-hong, WENG Lei, ZHAO Yan-lin, GUO Bao-hua, LUO Tao. On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates [J]. Engineering Geology, 2019, 253: 94–110. DOI: 10.1016/j.enggeo.2019.03.014.

    Article  Google Scholar 

  3. LIN Hai, DENG Jin-geng, LIU Wei, XIE Tao, XU Jie, LIU Hai-long. Numerical simulation of hydraulic fracture propagation in weakly consolidated sandstone reservoirs [J]. Journal of Central South University, 2018, 25: 2944–2952. DOI: 10.1007/s11771-018-3964-8.

    Article  Google Scholar 

  4. WANG Dong-yi, LI Xi-bing, PENG Kang, MA Chun-de, ZHANG Zhen-yu, LIU Xiao-qian. Geotechnical characterization of red shale and its indication for ground control in deep underground mining [J]. Journal of Central South University, 2018, 25(12): 2979–2991. DOI: 10.1007/s11771-018-3968-4.

    Article  Google Scholar 

  5. LI He, SHI Shi-liang, LIN Bai-quan, LU Jie-xin, YE Qing, LU Yi, WANG Zheng, HONG Yi-du, ZHU Xiang-nan. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals [J]. Energy, 2019, 187: 115986. DOI: 10.1016/j.energy.2019.115986.

    Article  Google Scholar 

  6. TOLSTOY I. On elastic-waves in prestressed solids [J]. Journal of Geophysical Research, 1982, 87: 6823–6827. DOI: 10.1029/JB087iB08p06823.

    Article  Google Scholar 

  7. OGDEN R W, SOTIROPOULOS D A. The effect of pre-stress on the propagation and reflection of plane waves in incompressible elastic solids [J]. IMA Journal of Applied Mathematics, 1997, 59: 95–121. DOI: 10.1093/imamat/59.1.95.

    Article  MathSciNet  Google Scholar 

  8. OGDEN R W, SINGH B. The effect of rotation and initial stress on the propagation of waves in a transversely isotropic elastic solid [J]. Wave Motion, 2014, 51: 1108–1126. DOI: 10.1016/j.wavemoti.2014.05.004.

    Article  MathSciNet  Google Scholar 

  9. DHUA S, CHATTOPADHYAY A. Torsional wave in an initially stressed layer lying between two inhomogeneous media [J]. Meccanica, 2015, 50: 1775–1789. DOI: 10.1007/s11012-015-0119-y.

    Article  MathSciNet  Google Scholar 

  10. WU Qiu-hong, CHEN Lu, SHEN Bao-tang, DLAMINI B, LI Shu-qing, ZHU Yong-jian. Experimental investigation on rockbolt performance under the tension load [J]. Rock Mechanics and Rock Engineering, 2019, 52: 4605–4618. DOI: 10.1007/s00603-019-01845-1.

    Article  Google Scholar 

  11. WANG Qian, JI Shao-cheng, SUN Sheng-si, MARCOTTE D. Correlations between compressional and shear wave velocities and corresponding Poisson’s ratios for some common rocks and sulfide ores [J]. Tectonophysics, 2019, 469: 61–72. DOI: 10.1016/j.tecto.2009.01.025.

    Article  Google Scholar 

  12. ASEF M R, NAJIBI A R. The effect of confining pressure on elastic wave velocities and dynamic to static Young’s modulus ratio [J]. Geophysics, 2013, 78: D135–D142. DOI: 10.1190/geo2012-0279.1.

    Article  Google Scholar 

  13. LI Xi-bing, TAO Ming. The influence of initial stress on wave propagation and dynamic elastic coefficients [J]. Geomechanics and Engineering, 2015, 8: 377–390. DOI: 10.12989/gae.2015.8.3.377.

    Article  Google Scholar 

  14. ABDOLLAHIPOUR A, SOLTANIAN H, POURMAZAHERI Y, KAZEMZADEH E, FATEHI-MARJI M. Sensitivity analysis of geomechanical parameters affecting a wellbore stability [J]. Journal of Central South University, 2019, 26(3): 768–778. DOI: 10.1007/s11771-019-4046-2.

    Article  Google Scholar 

  15. SUN Hong-xin, ZUO Lei, WANG Xiu-yong, PENG Jian, WANG Wen-xin. Exact H-2 optimal solutions to inerter-based isolation systems for building structures [J]. Structural Control and Health Monitoring, 2019, 26(6): e2357. DOI: 10.1002/stc.2357.

    Article  Google Scholar 

  16. LI Xi-bing, ZHOU Zi-long, LOK T S, HONG Liang, YIN Tu-bing. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45: 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.

    Article  Google Scholar 

  17. LI Xi-bing, LI Di-yuan, GUO Lei, YE Zhou-yuan. Study on mechanical response of highly-stressed pillars in deep mining under dynamic disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26: 922–929. DOI: 10.1016/S1872-2067(07)60020-5.

    Google Scholar 

  18. ZHU Wan-cheng, LI Zhan-hai, ZHU Liang, TANG Chun-an. Numerical simulation on rockburst of underground opening triggered by dynamic disturbance [J]. Tunnelling and Underground Space Technology, 2010, 25: 587–599. DOI: 10.1016/j.tust.2010.04.004.

    Article  Google Scholar 

  19. TAO Ming, CHEN Zheng-hong, LI Xi-bing, ZHAO Hua-tao, YIN Tu-bing. Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations [J]. Geomechanics and Engineering, 2016, 10: 285–296. DOI: 10.12989/gae.2016.10.3.285.

    Article  Google Scholar 

  20. WU Qiu-hong, LI Xi-bing, WENG Lei, LI Qing-feng, ZHU Yong-jian, LUO Rong. Experimental investigation of the dynamic response of prestressed rockbolt by using an SHPB-based rockbolt test system [J]. Tunnelling and Underground Space Technology, 2019, 93: 103088. DOI: 10.1016/j.tust.2019.103088.

    Article  Google Scholar 

  21. JIANG Li-shuai, KONG Peng, ZHANG Pei-peng, SHU Jia-ming, WANG Qing-biao, CHEN Lian-jun, WU Quan-lin. Dynamic analysis of the rock burst potential of a longwall panel intersecting with a fault [J]. Rock Mechanics and Rock Engineering. DOI: 10.1007/s00603-019-02004-2. (in Press)

  22. GONG Feng-qiang, LUO Yong, LI Xi-bing, SI Xue-feng, TAO Ming. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels [J]. Tunnelling and Underground Space Technology, 2018, 81: 413–427. DOI: 10.1016/j.tust.2018.07.035.

    Article  Google Scholar 

  23. FENG Fan, LI Xi-bing, ROSTAMI J, PENG Ding-xiao, LI Di-yuan, DU Kun. Numerical investigation of hard rock strength and fracturing under polyaxial compression based on mogi-coulomb failure criterion [J]. International Journal of Geomechanics, 2019, 19(4): 04019005. DOI: 10.1061/(Asce)Gm.1943-5622.0001352.

    Article  Google Scholar 

  24. GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions [J]. Rock Mechanics and Rock Engineering, 2019, 52: 1459–1474. DOI: 10.1007/s00603-018-1660-5.

    Article  Google Scholar 

  25. FENG Fan, CHEN Shao-jie, LI Di-yuan, HU Song-tao, HUANG Wan-peng, LI Bo. Analysis of fractures of a hard rock specimen via unloading of central hole with different sectional shapes [J]. Energy Science and Engineering, 2019, 7: 2265–2286. DOI: 10.1002/ese3.432.

    Article  Google Scholar 

  26. LI Xi-bing, WENG Lei. Numerical investigation on fracturing behaviors of deep-buried opening under dynamic disturbance [J]. Tunnelling and Underground Space Technology, 2016, 54: 61–72.

    Article  Google Scholar 

  27. WENG Lei, HUANG Lin-qi, TAHERI A, LI Xi-bing. Rockburst characteristics and numerical simulation based on a strain energy density index: A case study of a roadway in Linglong gold mine, China [J]. Tunnelling and Underground Space Technology, 2019, 69: 223–232. DOI: 10.1016/j.tust.2017.05.011.

    Article  Google Scholar 

  28. GOVINDJEE S, KAY G J, SIMO J C. Anisotropic modeling and numerical-simulation of brittle damage in concrete [J]. International Journal for Numerical Methods in Engineering, 1995, 38: 3611–3633. DOI:10.1002/nme.1620382105.

    Article  Google Scholar 

  29. WENG Lei, LI Xi-bing, TAO Ming. Influence of geostress orientation on fracture response of deep underground cavity subjected to dynamic loading [J]. Shock and Vibration, 2015, 2015: 575879. DOI: 10.1155/2015/575879.

    Article  Google Scholar 

  30. ADAMS G R, JAGER A J. Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold-mines [J]. Journal of the South African Institute of Mining and Metallurgy, 1980, 80: 204–209.

    Google Scholar 

  31. SHEMYAKIN E I, FISENKO G L, KURLENYA M V, OPARIN V N, REVA V N, GLUSHIKHIN F P, ROZENBAUM M A, TROPP E A, KUZNETSOV Y S. Zonal disintegration of rocks around underground workings, Part 1: Data of in situ observations [J]. Soviet Mining Science Ussr, 1986, 22: 157–168. DOI: 10.1007/BF02500863.

    Article  Google Scholar 

  32. QIAN Qi-hu, ZHOU Xiao-ping, YANG Hai-qing, ZHANG Yong-xin, LI Xue-hua. Zonal disintegration of surrounding rock mass around the diversion tunnels in Jinping II Hydropower Station, Southwestern China [J]. Theoretical and Applied Fracture Mechanics, 2009, 51: 129–138. DOI: 10.1016/j.tafmec.2009.04.006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-hong Wu PhD  (吴秋红).

Additional information

Foundation item: Projects(51904101, 51774131, 51604109) supported by the National Natural Science Foundation of China; Project(2017M622524) supported by the Postdoctoral Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, L., Wu, Qh., Zhao, Yl. et al. Dynamic response and failure of rock in initial gradient stress field under stress wave loading. J. Cent. South Univ. 27, 963–972 (2020). https://doi.org/10.1007/s11771-020-4344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4344-8

Keywords

关键词

Navigation