Skip to main content
Log in

Through-thickness inhomogeneity of localized corrosion in 7050-T7451 Al alloy thick plate

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The through-thickness corrosion inhomogeneity of 7050-T7451 Al alloy thick plate was studied using immersion tests, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), slow strain rate testing (SSRT) technique combined with optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the through-thickness corrosion resistance is ranked in the order of T/2>surface>T/4. And the 75 mm-thick 7050 alloy plate presents better corrosion resistance than the 35 mm-thick plate. The results are discussed in terms of the combined effect of recrystallization and cooling rate in quenching. Alloy with lower volume fraction of recrystallization and smaller grain aspect ratio displays better corrosion resistance. The lower corrosion resistance caused by the slower cooling rate results from the higher coverage rate of grain boundary precipitates and larger width of precipitate free zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WILLIAMS J C, STARKE Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater, 2003, 51:5775–5799.

    Article  Google Scholar 

  2. PANIGRAHI S K, JAYAGANTHAN R. Effect of aging on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy [J]. J Alloys Compd, 2011, 509:9609–9616.

    Article  Google Scholar 

  3. CONDE A, FERNANDEZ B J, de DAMBORENEA J. Characterization of the SCC behaviour of 8090 Al-Li alloy by means of the slow-strain-rate technique [J]. Corros Sci, 1998, 40:91–102.

    Article  Google Scholar 

  4. NAJJAR D, MAGNIN T, WARNER T J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy [J]. Mater Sci Eng A, 1997, 238:293–302.

    Article  Google Scholar 

  5. FANG Hua-chan, CHEN Kang-hua, CHAO Hong, CHEN Xiang, YE Deng-feng. Current research status and prespects of ultra strength Al-Zn-Mg-Cu aluminium alloy [J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14:352–358.

    Google Scholar 

  6. WANG Hong, FU Gao-feng, SUN Ji-hong. Present research and developing trends of ultra high strength aluminium alloys [J]. Mater Review, 2006, 20:58–60.

    Google Scholar 

  7. SARKAR B, MAREK M, STARKE E. Effect of copper content and heat treatment on the stress corrosion characteristics of Al-6Zn-2Mg-xCu alloys [J]. Metall Trans A, 1981, 12:1939–1943.

    Article  Google Scholar 

  8. OU Bin-lung, YANG Ji-gang, YANG Chen-kuo. Effects of step-quench and aging on mechanical properties and resistance to stress corrosion cracking of 7050 aluminum alloy [J]. Mater Trans, 2000, 41:783–789.

    Article  Google Scholar 

  9. BOBBY KANNAN M, RAJA V S. Enhancing stress corrosion cracking resistance in Al-Zn-Mg-Cu-Zr alloy through inhibiting recrystallization [J]. Eng Fract Mech, 2010, 77:249–256.

    Article  Google Scholar 

  10. WANG D, NI D R, MA Z Y. Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy [J]. Mater Sci Eng A, 2008, 494:360–366.

    Article  Google Scholar 

  11. REDA Y, ABDEL-KARIM R, ELMAHALLAWI I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging [J]. Mater Sci Eng A, 2008, 485A:468–475.

    Article  Google Scholar 

  12. SONG R G, DIETZEL W, ZHANG B J, LIU W J, TSENG M K, ATRENS A. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater, 2004, 52:4727–4743.

    Article  Google Scholar 

  13. WLOKA J, BURKLIN G, VIRTANEN S. Influence of second phase particles on initial electrochemical properties of AA7010-T76 [J]. Electrochim Acta, 2007, 53:2055–2059.

    Article  Google Scholar 

  14. KIM S H, ERB U, AUST K T, PALUMBO G. Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum [J]. Scripta Mater, 2001, 44:835–839.

    Article  Google Scholar 

  15. PENG Guo-sheng, CHEN Kang-hua, CHEN Song-yi, FANG Hua-chan. Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al-Zn-Mg-Cu alloy [J]. Transactions of Nonferrous Metals Society of China, 2012, 22:803–809.

    Article  Google Scholar 

  16. SINYAVSKIIV S, ULANOVA V V, KALININ V D. On the mechanism of intergranular corrosion of aluminum alloys [J]. Protection of Metals, 2004, 40:537–546.

    Google Scholar 

  17. PENG Guo-sheng, CHEN Kang-hua, FANG Hua-chan. The effect of recrystallization on corrosion and electrochemical behavior of 7150 Al alloy [J]. Mater Corros, 2009, 60:1–6.

    Google Scholar 

  18. FAN Xi-gang, JIANG Da-ming, ZHONG Li, WANG Tao, REN Shi-yu. Influence of microstructure on the crack propagation and corrosion resistance of Al-Zn-Mg-Cu alloy 7150 [J]. Mater Charact, 2007, 58:24–28.

    Article  Google Scholar 

  19. SONG Feng-xuan, ZHANG Xin-min, LIU Sheng-dan, HAN Nian-mei, LI Dong-feng. Anisotropy of localized corrosion in 7050-T7451 Al alloy thick plate [J]. Transactions of Nonferrous Metals Society of China, 2013, 23, 2483–2490.

    Article  Google Scholar 

  20. GB/T 22639-2008. National standard of China. Test method of exfoliation corrosion for wrought aluminum and aluminum alloys [S].

  21. GB 7998-2005. National standard of China. Test method for intergranular corrosion of aluminum alloys [S].

  22. GB 15970. 7-2000. National standard of China. Corrosion of metals and alloys-stress corrosion testing -slow strain rate testing [S].

  23. HU J, XU L X, YAO C K. Location corrosion of alumina borate whisker reinforced AA2024 T6 composite in aqueous 3.5% NaCl solution [J]. Mater Chem Phys, 2002, 76:290–294.

    Article  Google Scholar 

  24. LI J F, JIA Z Q, LI C X, BIRBILIS N, CAI C. Exfoliation corrosion of 7150 Al alloy with various tempers and its electrochemical impedance spectroscopy in EXCO solution [J]. Mater Corros, 2009, 60:407–414.

    Article  Google Scholar 

  25. MOREIRA A H, BENEDETTI A V, SUMODJO P T A, GARRIDO J A, CABOT P L. Electrochemical behaviour of heat-treated Al-Zn-Mg alloys in chloride solutions containing sulphate [J]. Electrochim Acta, 2002, 47:2823–2831.

    Article  Google Scholar 

  26. CONDE A, de DAMBORENEA J. Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy [J]. Corros Sci, 2000, 42:1363–1377.

    Article  Google Scholar 

  27. CONDE A, de DAMBORENEA J. Electrochemical modelling of exfoliation corrosion behaviour of 8090 alloy [J]. Electrochim Acta, 1998, 43:849–860.

    Article  Google Scholar 

  28. XIAO Yan-pin, PAN Qin-lin, LI Wen-bin, LIU Xiao-yan, HE Yun-bin. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy [J]. Mater Des, 2011, 32:2149–2156.

    Article  Google Scholar 

  29. BRUNNER J G, BIRBILIS N, RALSTON K D, VIRTANEN S. Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024 [J]. Corros Sci, 2012, 57:209–214.

    Article  Google Scholar 

  30. CHEN Song-yi, CHEN Kang-hua, PENG Guo-sheng, JIA Le, DONG Peng-xuan. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy [J]. Mater Des, 2012, 35:93–98.

    Article  Google Scholar 

  31. SONG Feng-xuan, ZHANG Xin-min, LIU Sheng-dan, TAN Qi, LI Dong-feng. The effect of quench rate and overaging temper on the corrosion behaviour of AA7050 [J]. Corros Sci, 2014, 78:276–286.

    Article  Google Scholar 

  32. CHEN Song-yi, CHEN Kang-hua, DONG Peng-xuan, YE Sheng-ping, HUANG Lan-ping. Effect of recrystallization and heat treatment on strength and SCC of an Al-Zn-Mg-Cu alloy [J]. J Alloys Compd, 2013, 581:705–709.

    Article  Google Scholar 

  33. PUIGGALI M, ZIELINSKI A, OLIVE J, RENAULD E, DESJARDINS D, CID M. Effect of microstructure on stress corrosion cracking of an Al-Zn-Mg-Cu alloy [J]. Corros Sci, 1998, 40:805–819.

    Article  Google Scholar 

  34. TSAI T C, CHUANG T H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys [J]. Mater Sci Eng A, 1997, 225:135–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-lin Pan  (潘清林).

Additional information

Foundation item: Project(2012CB619503) supported by the National Basic Research Program of China; Project(2013AH100055) supported by the Foshan Civic Technological Innovation Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Pan, Ql., Wei, Ll. et al. Through-thickness inhomogeneity of localized corrosion in 7050-T7451 Al alloy thick plate. J. Cent. South Univ. 22, 2423–2434 (2015). https://doi.org/10.1007/s11771-015-2769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2769-2

Key words

Navigation