Skip to main content
Log in

Co-occurrence patterns of above-ground and below-ground mite communities in farmland of Sanjiang Plain, Northeast China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

One of the fundamental questions in community ecology is whether communities are random or formed by deterministic mechanisms. Although many efforts have been made to verify non-randomness in community structure, little is known with regard to co-occurrence patterns in above-ground and below-ground communities. In this paper, we used a null model to test non-randomness in the structure of the above-ground and below-ground mite communities in farmland of the Sanjiang Plain, Northeast China. Then, we used four tests for non-randomness to recognize species pairs that would be demonstrated as significantly aggregated or segregated co-occurrences of the above-ground and below-ground mite communities. The co-occurrence pattern of the above-ground mite community was significantly non-random in October, suggesting species segregation and hence interspecific competition. Additionally, species co-occurrence patterns did not differ from randomness in the above-ground mite community in August or in below-ground mite communities in August and October. Only one significant species pair was detected in the above-ground mite community in August, while no significant species pairs were recognized in the above-ground mite community in October or in the below-ground mite communities in August and October. The results indicate that non-randomness and significant species pairs may not be the general rule in the above-ground and below-ground mite communities in farmland of the Sanjiang Plain at the fine scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams D C, 2007. Organization of Plethodon salamander communities: Guild-based community assembly. Ecology, 88(5): 1292–1299. doi: 10.1890/06-0697

    Article  Google Scholar 

  • Albrecht M, Gotelli N J, 2001. Spatial and temporal niche partitioning in grassland ants. Oecologia, 126(1): 134–141. doi: 10.1007/s004420000494

    Article  Google Scholar 

  • Balogh J, Balogh P, 1992. The Oribatid Mites Genera of the World (Vol. 1 and 2). Budapest: The Hungarian National Museum Press, 263, 371.

    Google Scholar 

  • Bardgett R D, Wardle D A, 2010. Aboveground-belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change. Oxford: Oxford University Press, 1–287.

    Google Scholar 

  • Benjamini Y, Yekutieli D, 2001. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4): 1165–1188. doi: 10.2307/2674075

    Article  Google Scholar 

  • Caruso T, Taormina M, Migliorini M, 2012. Relative role of deterministic and stochastic determinants of soil animal community: A spatially explicit analysis of oribatid mites. Journal of Animal Ecology, 81(1): 214–221. doi: 10.1111/j.1365-2656.2011.01886.x

    Article  Google Scholar 

  • Caruso T, Trokhymets V, Bargagli R et al., 2013. Biotic interactions as a structuring force in soil communities: Evidence from the micro-arthropods of an Antarctic moss model system. Oecologia, 172(2): 495–503. doi: 10.1007/s00442-012-2503-9

    Article  Google Scholar 

  • Chave J, 2004. Neutral theory and community ecology. Ecology Letters, 7(3): 241–253. doi: 10.1111/j.1461-0248.2003.00566.x

    Article  Google Scholar 

  • Connor E F, Simberloff D, 1979. The assembly of species communities: Chance or competition? Ecology, 60(6): 1132–1140. doi: 10.1016/j.apsoil.2008.01.007

    Article  Google Scholar 

  • Decaëns T, Margerie P, Aubert M et al., 2008. Assembly rules within earthworm communities in north-western France—A regional analysis. Applied Soil Ecology, 39(3): 321–335. doi: 10.1016/j.apsoil.2008.01.007

    Article  Google Scholar 

  • Deyna G B D, Putten W H V, 2005. Linking aboveground and belowground diversity. Trends in Ecology & Evolution, 20(11): 625–633. doi: 10.1016/j.tree.2005.08.009

    Article  Google Scholar 

  • Diamond J M, 1975. Assembly of Species Communities. Cambridge: Harvard University Press, 342–444.

    Google Scholar 

  • Ehouman N M, Tiho S, Dagnogo M, 2012. Co-occurrence of earthworms in Lamto savanna: A null model analysis of community structure. European Journal of Soil Biology, 53(11–12): 40–47. doi: 10.1016/j.ejsobi.2012.08.007

    Article  Google Scholar 

  • Ellwood M D F, Manica A, Foster W A, 2009. Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecology Letters, 12(4): 277–284. doi: 10.1111/j.1461-0248.2009.01284.x

    Article  Google Scholar 

  • Escoriza D, Boix D, 2012. Assessing the potential impact of an invasive species on a Mediterranean amphibian assemblage: A morphological and ecological approach. Hydrobiologia, 680(1): 233–245. doi: 10.1007/s10750-011-0936-5

    Article  Google Scholar 

  • Ettema C H, Yeates G W, 2003. Nested spatial biodiversity patterns of nematode genera in a New Zealand forest and pasture soil. Soil Biology and Biochemistry, 35(2): 339–342. doi: 10.1016/S0038-0717(02)00276-6

    Article  Google Scholar 

  • Fayle T M, Manica A, 2010. Reducing over-reporting of deterministic co-occurrence patterns in biotic communities. Ecological Modelling, 221(19): 2237–2242. doi: 10.1016/j.ecolmodel.2010.06.013

    Article  Google Scholar 

  • Feeley K, 2003. Analysis of avian communities in Lake Guri, Venezuela, using multiple assembly rule models. Oecologia, 137(1): 104–113. doi: 10.1007/s00442-003-1321-5

    Article  Google Scholar 

  • Fiera C, Ulrich W, 2012. Spatial patterns in the distribution of European springtails (Hexapoda: Collembola). Biological Journal of the Linnean Society, 105(3): 498–506. doi: 10.1111/j.1095-8312.2011.01816.x

    Article  Google Scholar 

  • Fox B J, Brown J H, 1993. Assembly rules for functional groups in north American desert rodent communities. Oikos, 67(2): 358–370.

    Article  Google Scholar 

  • Gotelli N J, 2000. Null model analysis of species co-occurrence patterns. Ecology, 81(9): 2606–2621. doi: 10.1890/0012-9658(2000)081

    Article  Google Scholar 

  • Gotelli N J, 2002. Research frontiers in null model analysis. Global Ecology and Biogeography, 10(4): 337–343. doi: 10.1046/j.1466-822X.2001.00249.x

    Article  Google Scholar 

  • Gotelli N J, Ellison A M, 2002. Assembly rules for New England ant assemblages. Oikos, 99(3): 591–599. doi: 10.1034/j.1600-0706.2002.11734.x

    Article  Google Scholar 

  • Gotelli N J, Entsminger G L, 2009. Ecosim: Null models software for ecology (version 7). Acquired Intelligence Inc. and Kesey-Bear: Jericho, VT, USA. Available at: http:/garyentsminger.com/ecosim.htm.

    Google Scholar 

  • Gotelli N J, Graves G R, 1996. Null Models in Ecology. Washington: Smithsonian Institution Press, 1–368.

    Google Scholar 

  • Gotelli N J, McCabe D J, 2002. Species co-occurrence: A meta-analysis of J M Diamond’s assembly rules model. Ecology, 83(8): 2091–2096. doi: 10.1890/0012-9658(2002)083

    Article  Google Scholar 

  • Gotelli N J, Rohde K, 2002. Co-occurrence of ectoparasites of marine fishes: A null model analysis. Ecology Letters, 5(1): 86–94. doi: 10.1046/j.1461-0248.2002.00288.x

    Article  Google Scholar 

  • Gotelli N J, Ulrich W, 2010. The empirical Bayes approach as a tool to identify non-random species associations. Oecologia, 162(2): 463–477. doi: 10.1007/s00442-009-1474-y

    Article  Google Scholar 

  • Gotelli N J, Ulrich W, 2012. Statistical challenges in null model analysis. Oikos, 121(2): 171–180. doi: 10.1111/j.1600-0706.2011.20301.x

    Article  Google Scholar 

  • Graves G R, Gotelli N J, 1993. Assembly of avian mixed-species flocks in Amazonia. Proceedings of the National Academy of Sciences of the United States of America, 90(4): 1388–1391. doi: 10.1073/pnas.90.4.1388

    Article  Google Scholar 

  • Gutiérrez-López M, Jesús J B, Trigo D et al., 2010. Relationships among spatial distribution of soil microarthropods, earthworm species and soil properties. Pedobiologia, 53(6): 381–389. doi: 10.1016/j.pedobi.2010.07.003

    Article  Google Scholar 

  • Hanski I, 1982. Communities of bumblebees: Testing the core-satellite species hypothesis. Annales Zoologici Fennici, 19: 65–73.

    Google Scholar 

  • Haukisalmi V, Henttonen H, 1998. Analysing interspecific associations in parasites: Alternative methods and effects of sampling heterogeneity. Oecologia, 116(4): 565–574. doi: 10.1007/s004420050622

    Article  Google Scholar 

  • Ingimarsdóttir M, Caruso T, Ripa J et al., 2012. Primary assembly of soil communities: Disentangling the effect of dispersal and local environment. Oecologia, 170(3): 745–754. doi: 10.1007/s00442-012-2334-8

    Article  Google Scholar 

  • Jiménez J J, Decaëns T, Rossi J P, 2012. Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the Colombian’ Llanos’. Oikos, 121(6): 915–926 doi: 10.1111/j.1600-0706.2012.20428.x

    Article  Google Scholar 

  • Jiménez J J, Rossi J P, 2006. Spatial dissociation between two endogeic earthworms in the Colombian ‘Llanos’. European Journal of Soil Biology, 42(S1): S218–S224 doi: 10.1016/j.ejsobi.2006.07.032

    Article  Google Scholar 

  • Jiménez J J, Rossi J P, Lavelle P, 2001. Spatial distribution of earthworms in acid-soil savannas of the eastern plains of Colombia. Applied Soil Ecology, 17(3): 267–278. doi: 10.1016/S0929-1393(01)00133-0

    Article  Google Scholar 

  • Krantz G W, 1978. A manual of Acarology. Corvallis: Oregon State University Book Stores Inc., 1–509.

    Google Scholar 

  • Krantz G W, Walter D E, 2009. A Manual of Acarology (Third edition). Lubbock: Texas Tech University Press, 1–807.

    Google Scholar 

  • Krasnov B R, Shenbrot G I, Khokhlova I S, 2011. Aggregative structure is the rule in communities of fleas: Null model analysis. Ecography, 34(5): 751–761. doi: 10.1111/j.1600-0587.2010.06597.x

    Article  Google Scholar 

  • Leibold M A, Mikkelson G M, 2002. Coherence, species turnover, and boundary clumping: Elements of meta-community structure. Oikos, 97(2): 237–250. doi: 10.1034/j.1600-0706.2002.970210.x

    Article  Google Scholar 

  • Lindo Z, Winchester N N, 2009. Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia, 160(4): 817–825. doi: 10.1007/s00442-009-1348-3

    Article  Google Scholar 

  • Patterson B D, Atmar W, 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society, 28(1–2): 65–82. doi: 10.1111/j.1095-8312.1986.tb01749.x

    Article  Google Scholar 

  • Pitta E, Giokas S, Sfenthourakis S, 2012. Significant pairwise co-occurrence patterns are not the rule in the majority of biotic communities. Diversity, 4(2): 179–193. doi: 10.3390/d4020179

    Article  Google Scholar 

  • Pitzalis M, Luiselli L, Bologna M A, 2010. Co-occurrence analyses show that non-random community structure is disrupted by fire in two groups of soil arthropods (Isopoda Oniscidea and Collembola). Acta Oecologica, 36(1): 100–106. doi: 10.1016/S0929-1393(01)00133-0

    Article  Google Scholar 

  • Rossi J P, Nuutinen V, 2004. The effect of sampling unit size on the perception of the spatial pattern of earthworm (Lumbricus terrestris L.) middens. Applied Soil Ecology, 27(2): 189–196. doi: 10.1016/j.apsoil.2004.03.001

    Article  Google Scholar 

  • Sanders N J, Gotelli N J, Wittman S E et al., 2007. Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scale. Journal of Biogeography, 34(9): 1632–1641. doi: 10.1111/j.1365-2699.2007.01714.x

    Article  Google Scholar 

  • Schluter D, 1984. A variance test for detecting species associations, with some example applications. Ecology, 65(3): 998–1005. doi: 10.2307/1938071

    Article  Google Scholar 

  • Sfenthourakis S, Tzanatos E, Giokas S et al., 2006. Species co-occurrence: The case of congeneric species and a causal approach to patterns of species association. Global Ecology and Biogeography, 15(1): 39–49. doi: 10.1111/j.1466-822X.2005.00192.x

    Article  Google Scholar 

  • Stone L, Roberts A, 1990. The checkerboard score and species distribution. Oecologia, 85(1): 74–79. doi: 10.1007/BF00317345

    Article  Google Scholar 

  • Ulrich W, 2004. Species co-occurrences and neutral models: Reassessing J M Diamond’s assembly rules. Oikos, 107(3): 603–609. doi: 10.1111/j.0030-1299.2004.12981.x

    Article  Google Scholar 

  • Ulrich W, 2008. Pairs-a FORTRAN program for studying pair-wise species associations in ecological matrices (Version 1.0). Available at: www.uni.torun.pl/~ulrichw.

    Google Scholar 

  • Ulrich W, Gotelli N J, 2007. Disentangling community patterns of nestedness and species co-occurrence. Oikos, 116(12): 2053–2061. doi: 10.1111/j.2007.0030-1299.16173.x

    Article  Google Scholar 

  • Veech J A, 2006. A probability-based analysis of temporal and spatial co-occurrence in grassland birds. Journal of Biogeography, 33(12): 2145–2153. doi: 10.1111/j.1365-2699.2006.01571.x

    Article  Google Scholar 

  • Walter D E, Proctor H C, 2001. Mites in Soil (CD-ROM). Collingswood: CSIRO Publishing.

    Google Scholar 

  • Ward D, Beggs J, 2007. Coexistence, habitat patterns and the assembly of ant communities in the Yasawa islands, Fiji. Acta Oecologica, 32(2): 215–223. doi: 10.1016/j.actao.2007.05.002

    Article  Google Scholar 

  • Wardle D A, Bardgett R D, Klironomos J N et al., 2004. Ecological linkages between aboveground and belowground biota. Science, 304(5677): 1629–1633. doi: 10.1126/science.1094875

    Article  Google Scholar 

  • Wilson J B, Whittaker R J, 1995. Assembly rules demonstrated in saltmarsh community. Journal of Ecology, 83(5): 801–807.

    Article  Google Scholar 

  • Yin Wenying, Hu Shenghao, Shen Yunfen et al., 1998. Pictorical Keys to Soil Animals of China. Beijing: Science Press, 527–562. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meixiang Gao or Donghui Wu.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 41101049, 40601047, 41371072, 31101617, 41171047), China Postdoctoral Science Foundation (No. 2012M511361), Excellent Youth Scholars of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (No. DLSYQ2012004), Fund for Distinguished Young Scholar of Harbin Normal University (No. KGB201204), Scientific Innovation Project for Doctoral Candidate of Harbin Normal University (No. HSDBSCX2012-07)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Gao, M., Liu, D. et al. Co-occurrence patterns of above-ground and below-ground mite communities in farmland of Sanjiang Plain, Northeast China. Chin. Geogr. Sci. 24, 339–347 (2014). https://doi.org/10.1007/s11769-014-0683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-014-0683-4

Keywords

Navigation