Skip to main content
Log in

Research on variational optical flow method for rockfall monitoring

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Rockfall is a global mountain disaster problem, which has the characteristics of wide distribution, strong randomness, and inconspicuousness. The contacted monitoring method is difficult to deploy. Simultaneously, the non-contact detection is easily affected by complex environments and generally has less robustness. This paper presents a rockfall monitoring technology based on machine vision. First, a high-resolution industrial camera continuously acquires images of the monitoring area. Then, we perform a series of operations on the landslide rockfall images, including image preprocessing, image optical flow algorithm preprocessing to identify the features of the rockfall. Finally, a dynamic target detection experiment is carried out to verify the feasibility of the image optical flow algorithm. Experiments of rockfall monitoring verify the effectiveness and generalization abilities of the algorithm. From the results: (1) The features of the image data in this paper are clear, and the recognition range covers the whole visual field. (2) The technology can capture the motion characteristics of landslide rockfall in different scenes. (3) The processing efficiency of the algorithm can reach 10 frames per second. Thus, this technology can be used in a monitoring system for rockfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Adelson, E. H., Burt, P. J., Anderson, C. H., Ogden, J. M., & Bergen, J. R.: Pyramid methods in image processing. RCA Engineer (1984)

  2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision (2011). https://doi.org/10.1007/s11263-010-0390-2

    Article  Google Scholar 

  3. Barla, G., Antolini, F., Barla, M., Mensi, E., Piovano, G.: Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng. Geol. (2010). https://doi.org/10.1016/j.enggeo.2010.09.004

    Article  Google Scholar 

  4. Brox, T., Bruhn, A., Papenberg, N., & Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 25–36) (2004). https://doi.org/10.1007/978-3-540-24673-2_3

  5. Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnorr, C.: Variational optical flow computation in real time. IEEE Trans. Image Process. 14, 608–615 (2005). https://doi.org/10.1109/TIP.2005.846018

    Article  MathSciNet  Google Scholar 

  6. Carlà, T., Tofani, V., Lombardi, L., Raspini, F., Bianchini, S., Bertolo, D., Thuegaz, P., Casagli, N.: Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology (2019). https://doi.org/10.1016/j.geomorph.2019.03.014

    Article  Google Scholar 

  7. Casagli, N., Catani, F., Del Ventisette, C., Luzi, G.: Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides (2010). https://doi.org/10.1007/s10346-010-0215-y

    Article  Google Scholar 

  8. Chen, H., Zeng, Z., Tang, H.: Landslide deformation prediction based on recurrent neural network. Neural. Process. Lett. (2015). https://doi.org/10.1007/s11063-013-9318-5

    Article  Google Scholar 

  9. Cheon, D.-S., Jung, Y.-B., Park, E.-S., Song, W.-K., Jang, H.-I.: Evaluation of damage level for rock slopes using acoustic emission technique with waveguides. Eng. Geol. 121, 75–88 (2011). https://doi.org/10.1016/j.enggeo.2011.04.015

    Article  Google Scholar 

  10. Crosta, G.B., Agliardi, F., Rivolta, C., Alberti, S., Dei Cas, L.: Long-term evolution and early warning strategies for complex rockslides by real-time monitoring. Landslides (2017). https://doi.org/10.1007/s10346-017-0817-8

    Article  Google Scholar 

  11. Del Ventisette, C., Casagli, N., Fortuny-Guasch, J., Tarchi, D.: Ruinon landslide (Valfurva, Italy) activity in relation to rainfall by means of GBInSAR monitoring. Landslides. https://doi.org/10.1007/s10346-011-0307-3 (2012)

  12. Eberhardt, E., Watson, A., Loew, S.: Improving the interpretation of slope monitoring and early warning data through a better understanding of complex deep-seated landslide failure mechanisms. In Landslides and Engineered Slopes. From the Past to the Future. https://doi.org/10.1201/9780203885284-c3 (2008)

  13. Feng, Z., Li, B., Yin, Y.P., He, K.: Rockslides on limestone cliffs with subhorizontal bedding in the southwestern calcareous area of China. Nat. Hazard. 14, 2627–2635 (2014). https://doi.org/10.5194/nhess-14-2627-2014

    Article  Google Scholar 

  14. Feng, Z., Li, B., He, K.: Rock collapse mechanism on high-steep slope failure in sub-horizontal thick-bedded mountains. J. Geom. 20, 123–131 (2014)

    Google Scholar 

  15. Ferrero, A.M., Migliazza, M.R., Pirulli, M., Umili, G.: Some open issues on rockfall hazard analysis in fractured rock mass: problems and prospects. Rock Mech. Rock Eng. (2016). https://doi.org/10.1007/s00603-016-1004-2

    Article  Google Scholar 

  16. Gaffet, S., Guglielmi, Y., Cappa, F., Pambrun, C., Monfret, T., Amitrano, D.: Use of the simultaneous seismic, GPS and meteorological monitoring for the characterization of a large unstable mountain slope in the southern French Alps. Geophys. J. Int. (2010). https://doi.org/10.1111/j.1365-246X.2010.04683.x

    Article  Google Scholar 

  17. Gance, J., Malet, J.-P., Dewez, T., Travelletti, J.: Target detection and tracking of moving objects for characterizing landslide displacements from time-lapse terrestrial optical images. Eng. Geol. 172, 26–40 (2014). https://doi.org/10.1016/j.enggeo.2014.01.003

    Article  Google Scholar 

  18. Gischig, V.S., Moore, J.R., Evans, K.F., Amann, F., Loew, S.: Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability. J. Geophys. Res. Earth Surf. (2011). https://doi.org/10.1029/2011JF002007

    Article  Google Scholar 

  19. Guthrie, R. H., Friele, P., Allstadt, K., Roberts, N., Evans, S. G., Delaney, K. B., Roche, D., Clague, J. J., Jakob, M.: The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: Characteristics, dynamics, and implications for hazard and risk assessment. Natural Hazards and Earth System Science. https://doi.org/10.5194/nhess-12-1277-2012 (2012)

  20. Helmstetter, A., Garambois, S.: Seismic monitoring of Schilienne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J. Geophys. Res. Earth Surf. 115, 1–15 (2010). https://doi.org/10.1029/2009JF001532

    Article  Google Scholar 

  21. Yi, H., et al.: Survey of vision based object detection and tracking. J. Autom. 42(10), 1466–1489 (2016)

    Google Scholar 

  22. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. (1981). https://doi.org/10.1016/0004-3702(81)90024-2

    Article  Google Scholar 

  23. Karunarathne, S.M., Dray, M., Popov, L., Butler, M., Pennington, C., Angelopoulos, C.M.: A technological framework for data-driven IoT systems: application on landslide monitoring. Comput. Commun. (2020). https://doi.org/10.1016/j.comcom.2020.02.076

    Article  Google Scholar 

  24. Marcato, G., Mantovani, M., Pasuto, A., Zabuski, L., Borgatti, L.: Monitoring, numerical modeling and hazard mitigation of the Moscardo landslide (Eastern Italian Alps). Eng. Geol. (2012). https://doi.org/10.1016/j.enggeo.2011.09.014

    Article  Google Scholar 

  25. Mateos, R.M., López-Vinielles, J., Poyiadji, E., Tsagkas, D., Sheehy, M., Hadjicharalambous, K., Liscák, P., Podolski, L., Laskowicz, I., Iadanza, C., Gauert, C., Todorović, S., Auflič, M.J., Maftei, R., Hermanns, R.L., Kociu, A., Sandić, C., Mauter, R., Sarro, R., Herrera, G.: Integration of landslide hazard into urban planning across Europe. Landsc. Urban Plan. (2020). https://doi.org/10.1016/j.landurbplan.2019.103740

    Article  Google Scholar 

  26. Mochizuki, Y., Kameda, Y., Imiya, A., Sakai, T., Imaizumi, T.: Variational method for super-resolution optical flow. Signal Process. (2011). https://doi.org/10.1016/j.sigpro.2010.11.010

    Article  Google Scholar 

  27. Nishii, R., Matsuoka, N.: Monitoring rapid head scarp movement in an alpine rockslide. Eng. Geol. (2010). https://doi.org/10.1016/j.enggeo.2010.06.014

    Article  Google Scholar 

  28. Otsu, N.: Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. (1979). https://doi.org/10.1109/tsmc.1979.4310076

    Article  Google Scholar 

  29. Riedel, P., Gomes, A., Ferreira, M., Sampaio Lopes, E., Sturaro, J.: Identification of landslide scars in the region of the Serra do Mar, São Paulo State, Brazil, using digital image processing and spatial analysis tools. GI Sci. Remote Sens. (2010). https://doi.org/10.2747/1548-1603.47.4.498

    Article  Google Scholar 

  30. Rosin, P.L., Hervás, J.: Remote sensing image thresholding methods for determining landslide activity. Int. J. Remote Sens. (2005). https://doi.org/10.1080/01431160512331330481

    Article  Google Scholar 

  31. Travelletti, J., Delacourt, C., Allemand, P., Malet, J.P., Schmittbuhl, J., Toussaint, R., Bastard, M.: Correlation of multi-temporal ground-based optical images for landslide monitoring: application, potential and limitations. ISPRS J. Photogramm. Remote Sens. (2012). https://doi.org/10.1016/j.isprsjprs.2012.03.007

    Article  Google Scholar 

  32. Tian, H.: Study on the plateform of rainfall-induced landslide prediction system. Institute of Mountain and Environment, Chinese Academy of Sciences pp. 1–121 (2007).

  33. Tung, S.H., Shih, M.H., Sung, W.P.: Identification of the landslide using the satellite images and the digital image correlation method. Disaster Adv. 6, 4–9 (2013)

    Google Scholar 

  34. Weixing, W., Kan, H., et al.: Remote automatic monitoring and early warning system design for landslide based on GIS. J. Water Resour. Archit. Eng. 18(5), 180–184 (2020)

    Google Scholar 

  35. Wang, H., Nie, D., Tuo, X., Zhong, Y.: Research on crack monitoring at the trailing edge of landslides based on image processing. Landslides 17, 985–1007 (2020). https://doi.org/10.1007/s10346-019-01335-z

    Article  Google Scholar 

  36. Xing, A., Wang, G., Yin, Y., Tang, C., Xu, Z., Li, W.: Investigation and dynamic analysis of a catastrophic rock avalanche on September 23, 1991, Zhaotong, China. Landslides 13, 1035–1047 (2016). https://doi.org/10.1007/s10346-015-0617-y

    Article  Google Scholar 

  37. Yan, C.: The study of slope displacement detection method based on image processing. Chongqing Jiaotong University, pp 1–64 (2012).

  38. Chen, Y.: Design of landslide early warning system based on Wireless Sensor Network. Hunan University, pp 1–56 (2016)

  39. Yin, Y., Sun, P., Zhu, J., Yang, S.: Research on catastrophic rock avalanche at Guanling, Guizhou, China. Landslides. https://doi.org/10.1007/s10346-011-0266-8 (2011).

  40. Zheng, H., Li, T., Shen, J., Xu, C., Sun, H., Lü, Q.: The effects of blast damage zone thickness on rock slope stability. Eng. Geol. (2018). https://doi.org/10.1016/j.enggeo.2018.09.021

    Article  Google Scholar 

  41. Zheng, Y., Zhu, Z.W., Li, W.J., Gu, D.M., Xiao, W.: Experimental research on a novel optic fiber sensor based on OTDR for landslide monitoring. Meas. J. Int. Meas. Confed. (2019). https://doi.org/10.1016/j.measurement.2019.106926

    Article  Google Scholar 

  42. Zhao, J., Chen, Y., Zhang, H., et al.: Physically based modeling and animation of landslides with MPM. Vis. Comput. 35, 1223–1235 (2019). https://doi.org/10.1007/s00371-019-01709-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the editors and reviewers for their constructive comments, which will greatly help improve the quality of this paper.

Funding

The work was supported in part by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project under Grant SKLGP2022Z011; in part by the Creative Research Groups of the Natural Science Foundation of Sichuan under Grants 2023NSFSC1984; in part by the Research Project of Chunhui Plan, Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research of this paper. Hui Chen contributed to conceptualization, resources, methodology, and funding acquisition. Lu Zhang contributed to methodology, investigation, data acquisition and experiment. Ying Zhang contributed to formal analysis, visualization, data acquisition and experiment. Juan Liu contributed to validation, data acquisition and experiment.

Corresponding author

Correspondence to Hui Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, L., Zhang, Y. et al. Research on variational optical flow method for rockfall monitoring. SIViP (2024). https://doi.org/10.1007/s11760-024-03187-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03187-0

Keyword

Navigation