Skip to main content
Log in

Uncertainty relations of the complex signals from generalized Hilbert transform on LCT

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

It is well known that as the generalized case for Fourier transform (FT) and fractional Fourier transform (FrFT), the linear canonical transform (LCT) has attracted more and more attention in signal processing and optics and so on due to more freedoms. On the other hand, as the tool of turning the real signals into the complex ones, the Hilbert transform (HT) is of much signification to information science. Since the complex signals through HT have the characteristic of the absence in negative frequency, HT plays an important role in communication. In the present paper, first, the generalized HT (GHT) in terms of LCT is given. Then, five types of generalized Uncertainty relations with novel uncertainty bounds of the complex signals in terms of generalized HT (GHT) in terms of LCT are demonstrated. These newly refined uncertainty bounds proved to be different from and much lower or sharper in many cases than that of the traditional complex and real signals. Finally, the examples are given to show the efficiency of the proposed uncertainty relations in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pei, S.C., Ding, J.J. Eigenfunctions of the linear canonical transform. Linear Canonical Transforms. (2016)

  2. Hennelly, B.M., Sheridan, J.T.: Fast numerical algorithm for the linear canonical transform. JOSA A 22(5), 928–37 (2005)

    Article  MathSciNet  Google Scholar 

  3. Ran, T., Bing, D., Yue, W.: Theory and Application of the Fractional Fourier Transform. Beijing Beijing Tsinghua University Press, Beingjing (2009)

    Google Scholar 

  4. Tianzhou, Xu., Bingzhao, Li.: The Linear Canonical Transform and Applications. Science Press, Beijing (2013)

    Google Scholar 

  5. Tao, R., Qi, L., Wang, Y.: Theory and application of the fractional Fourier transform. Tsinghua University Press, Beingjing (2004)

    Google Scholar 

  6. Aytür, O., Ozaktas, H.M.: Non-orthogonal domains in phase space of quantum optics and their relation to fractional Fourier transforms. Opt. Commun. 120(3–4), 166–170 (1995)

    Article  Google Scholar 

  7. Wei, Z., Ran, T., Yue, W.: Linear canonical S transform. Chin. J. Electron. 20(1), 63–66 (2011)

    Google Scholar 

  8. Sharma, K.K., Sharma, S.: Signal reconstruction using undersampled signals taken in multiple linear canonical transform domains. J. Opt. 14(5), 055702 (2012)

    Article  Google Scholar 

  9. Healy, J., Sheridan, J.T., Ryle, J.P.: Linear canonical transform sampling: analysis. Proc SPIE. 7427 (2009)

  10. Stern, A.: Sampling of compact signals in offset linear canonical transform domains. SIViP 1(4), 359–367 (2007)

    Article  MATH  Google Scholar 

  11. Mendlovic, D., Ozaktas, H.M.: Fractional Fourier transforms and their optical implementation: I. J. Opt. Soc. Am. A 10(9), 1875 (1993). https://doi.org/10.1364/JOSAA.10.001875

    Article  Google Scholar 

  12. Mustard, D.: Uncertainty principle invariant under fractional Fourier transform. J. Austral. Math. Soc. Ser. B 33, 180–191 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zayed, A.I.: On the relationship between the Fourier and fractional Fourier transform. IEEE Signal Process. Lett. 3(12), 310–311 (1996)

    Article  Google Scholar 

  14. Shinde, S., Vikram, M.G.: An uncertainty principle for real signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 49(11), 2545–2548 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dang, P., Deng, G.-T., Qian, T.: A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 61(21), 5153–5164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhao, J., Tao, R., Wang, Y.: On signal moments and uncertainty relations associated with linear canonical transform. Signal Process. 90(9), 2686–2689 (2010)

    Article  MATH  Google Scholar 

  17. Yan, Y., Kou, K.I.: Uncertainty principles for hypercomplex signals in the linear canonical transform domains. Signal Process. 95(2), 67–75 (2014)

    Google Scholar 

  18. Guanlei, X., Xiaotong, W., Xiaogang, X.: Three uncertainty relations for real signals associated with linear canonical transform. IET Signal Proc. 3(1), 85–92 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guanlei, X., Xiaotong, W., Xiaogang, X.: The logarithmic, Heisenberg’s and short-time uncertainty principles associated with fractional Fourier transform. Signal Process. 89(3), 339–343 (2009)

    Article  MATH  Google Scholar 

  20. Guanlei, Xu., Xiaogang, Xu., Wang, X., Wang, X.: Generalized Cramér-Rao inequality and uncertainty relation for fisher information on FrFT. SIViP 14, 499–507 (2020)

    Article  Google Scholar 

  21. Guanlei, X., Xiaotong, W., Xiaogang, X.: Generalized entropic uncertainty principle on fractional Fourier transform. Signal Process. 89(12), 2692–2697 (2009)

    Article  MATH  Google Scholar 

  22. Bialynicki-Birula, I.: Entropic uncertainty relations in quantum mechanics. In: Accardi, L., von Waldenfels, W. (eds.) Quantum Probability and Applications II, pp. 90–103. Springer Berlin Heidelberg, Berlin, Heidelberg (1985). https://doi.org/10.1007/BFb0074463

    Chapter  Google Scholar 

  23. Guanlei, X., Xiaotong, W., Xiaogang, X.: Uncertainty inequalities for linear canonical transform. IET Signal Process. 3(5), 392 (2009). https://doi.org/10.1049/iet-spr.2008.0102

    Article  MathSciNet  MATH  Google Scholar 

  24. Guanlei, Xu., Xiaogang, Xu., Wang, X.: Generalized entropic uncertainty principles on the complex signals in terms of fractional Hilbert transform. Optik 216, 164966 (2020)

    Article  Google Scholar 

  25. Guanlei, X., Xiaotong, W., Xiaogang, X.: New inequalities and uncertainty relations on linear canonical transform revisit. EURASIP J. Adv. Signal Process. 2009, 1–7 (2009)

    Article  MATH  Google Scholar 

  26. Guanlei, Xu., Xiaogang, Xu., Wang, X.: Generalized Heisenberg uncertainty relations for complex-valued signals out of Hilbert transform associated with LCT. Optik 224, 165529 (2020)

    Article  Google Scholar 

  27. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rényi, A.: Some fundamental questions of information theory. MTA III Oszt. Közl. 251 (1960)

  29. Guanlei, X., Xiaogang, X., Xiaotong, W.: Generalized uncertainty relations of Tsallis entropy on FrFT. SIViP (2020). https://doi.org/10.1007/s11760-020-01716-1

    Article  Google Scholar 

  30. Wilk, G., Włodarczyk, Z.: Uncertainty relations in terms of the Tsallis entropy. Phys. Rev. A (2009). https://doi.org/10.1103/PhysRevA.79.062108

    Article  MathSciNet  Google Scholar 

  31. Beckner, W.: Inequalities in Fourier analysis. Ann. Math. 102(1), 159–182 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dembo, A., Cover, T.M., Joy, A.: Thomas, information theoretic inequalities. IEEE Trans. Inform. Theory 37(6), 1501–1508 (2001)

    Article  MATH  Google Scholar 

  33. Hardy, G., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Press of University of Cambridge, Cambridge (1951)

    MATH  Google Scholar 

  34. Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  35. Bialynicki-Birula, I.: Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 74, 052101 (2006)

    Article  MathSciNet  Google Scholar 

  36. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Statist. Phys. 52(1–2), 479–487 (1988). https://doi.org/10.1007/BF01016429

    Article  MathSciNet  MATH  Google Scholar 

  37. Almeida, L.B.: The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  38. Ozaktas, H.M., Aytür, O.: Fractional Fourier domains. Signal Process. 46(1), 119–124 (1995). https://doi.org/10.1016/0165-1684(95)00076-P

    Article  MATH  Google Scholar 

  39. Cariolaro, G., Erseghe, T., Kraniauskas, P., Laurenti, N.: A unified framework for the fractional Fourier Transform. IEEE Trans. Signal Process. 46(12), 3206–3219 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pei, S.C., Ding, J.J.: Two-dimensional affine generalized fractional Fourier transform. IEEE Trans. Signal Proc. 49(4), 878–897 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Guanlei, X., Xiaotong, W., Xiaogang, X.: Extended Hilbert Transform for Multidimensional Signals. In IEE/IET Proc VIE 298–302 (2008)

  42. Zayed, A.I.: Hilbert transform associated with the fractional Fourier transform. IEEE Signal Process. Lett. 5(8), 206–208 (1998)

    Article  Google Scholar 

  43. Tao, R., Li, X.M., Wang, Y.: Generalization of the fractional Hilbert transform. IEEE Signal Process. Lett. 15(8), 365–368 (2008)

    Google Scholar 

  44. Lohmann, A.W., Mendlovic, D., Zalevsky, Z.: Fractional Hilbert transform. Opt. Lett. 21, 281–283 (1996)

    Article  Google Scholar 

  45. Pei, S.C., Yeh, M.H.: Discrete fractional Hilbert transform. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 47(11), 1307–1311 (2000)

    Article  Google Scholar 

  46. Li, B.-Z., Tao, R., Wang, Y.: Hilbert transform associated with the linear canonical transform. Acta Armamentarii 27(5), 827–830 (2006)

    Google Scholar 

  47. Cohen, L.: The uncertainty principles of windowed wave functions. Opt. Commun. 179, 221–229 (2000)

    Article  Google Scholar 

  48. Stankovic, L., Alieva, T., Bastiaans, M.J.: Time–frequency signal analysis based on the windowed fractional Fourier transform. Signal Process. 83, 2459–2468 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is fully supported by NSFCs (61771020, 61471412) and 2021PE0AC04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Guanlei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xu Xiaogang: Co-first author

Appendices

Appendix 1

Proof of Theorem 1

Proof

Note the result in [23, 25], we have the generalized uncertainty relation on Shannon entropy in terms of LCT as follows.

$$ - \int_{ - \infty }^{\infty } {\left| {F_{A} (u)} \right|^{2} \ln \left| {F_{A} (u)} \right|^{2} } {\text{d}}u - \int_{ - \infty }^{\infty } {\left| {F_{B} (v)} \right|^{2} \ln } \left| {F_{B} (v)} \right|^{2} {\text{d}}v\; \ge \ln (\pi e\left| {a_{1} b_{2} - a_{2} b_{1} } \right|) $$
(19)

Firstly, based on the definition of GHT shown in (3)–(5) and (19), we will obtain

$$- \int_{{ - \infty }}^{\infty } {\left| {F_{A}^{H} (u)} \right|^{2} \ln \left| {F_{A}^{H} (u)} \right|^{2} } {\text{d}}u $$

\(= - 4\int_{0}^{\infty } {\left| {F_{A} (u)} \right|^{2} \left( {2\ln 2 + \ln \left| {F_{A} (u)} \right|^{2} } \right)} {\text{d}}u\).

So we obtain the following relation

$$ - \int_{ - \infty }^{\infty } {\left| {F_{A}^{H} (u)} \right|^{2} \ln \left| {F_{A}^{H} (u)} \right|^{2} } {\text{d}}u = - 4\int_{0}^{\infty } {\left| {F_{A} (u)} \right|^{2} \ln 4} {\text{d}}u $$

\(- 4\int_{0}^{\infty } {\left| {F_{A} (u)} \right|^{2} \ln \left| {F_{A} (u)} \right|^{2} } {\text{d}}u\).

Here if \(F_{A} (u)\) is odd, then \(F_{A} ( - u) = - F_{A} (u)\), so if we let \(u^{\prime} = - u\), then taking into account the irrelevance of variable form we will have.

\(\int_{0}^{\infty } {\left| {F_{A} (u)} \right|^{2} } {\text{d}}u = \int_{ - \infty }^{0} {\left| {F_{A} (u)} \right|^{2} } {\text{d}}u\).

At the same time, if \(F_{A} (u)\) is even, then \(F_{A} ( - u) = F_{A} (u)\), so if we let \(u^{\prime} = - u\), thus taking into account of the irrelevance of variable form we will get the same result as follows.

\(\int_{0}^{\infty } {\left| {F_{A} (u)} \right|^{2} } {\text{d}}u = \int_{ - \infty }^{0} {\left| {F_{A} (u)} \right|^{2} } {\text{d}}u\).

Based on the analysis in above, we always have.

\(\int_{0}^{\infty } {\left| {F_{A} (u)} \right|^{2} } {\text{d}}u = \int_{ - \infty }^{0} {\left| {F_{A} (u)} \right|^{2} } {\text{d}}u\).

Meanwhile, note \(\left\| {f(t)} \right\|_{2} = 1\), based on the Parseval’s Principle [3,4,5] we will have.

\(\int_{ - \infty }^{\infty } {\left| {F_{A} (u)} \right|^{2} } {\text{d}}u = \int_{ - \infty }^{\infty } {\left| {F_{B} (v)} \right|^{2} } {\text{d}}v = 1\).

Thus, we will get the equation as follows.

\(\int_{0}^{\infty } {\left| {F_{A} (u)} \right|^{2} } {\text{d}}u = \int_{ - \infty }^{0} {\left| {F_{A} (u)} \right|^{2} } {\text{d}}u = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}\).

Hence we obtain.

\(- \int_{ - \infty }^{\infty } {\left| {F_{A}^{H} (u)} \right|^{2} \ln \left| {F_{A}^{H} (u)} \right|^{2} } {\text{d}}u = - \ln 16 - 4\int_{0}^{\infty } \left| {F_{A} (u)} \right|^{2} \ln \break \left| {F_{A} (u)} \right|^{2} {\text{d}}u\).

So, via the inequality in (7) we will get.

\(- \ln 16 - 4\int_{ - \infty }^{\infty } {\left| {F_{A} (u)} \right|^{2} \ln \left| {F_{A} (u)} \right|^{2} } {\text{d}}u - \ln 16\)\(- 4\int_{ - \infty }^{\infty }\break \left| {F_{B} (v)} \right|^{2} \ln \left| {F_{B} (v)} \right|^{2} {\text{d}}v\)\(\ge - 8\ln 2 + 4\ln (\pi e\left| {a_{1} b_{2} - a_{2} b_{1} } \right|)\).

Appendix 2

Proof of Theorem 4

Proof

From [23, 25], we know the following inequality of logarithm Uncertainty principle associated with LCT.

$$ \int_{ - \infty }^{\infty } {\ln \left| u \right|^{2} \left| {F_{A} (u)} \right|^{2} } {\text{d}}u + \int_{ - \infty }^{\infty } {\ln \left| v \right|^{2} \left| {F_{B} (v)} \right|^{2} } {\text{d}}v $$
$$ \ge \ln \left( {\left| {a_{1} b_{2} - a_{2} b_{1} } \right|^{2} } \right) + \frac{{2\Gamma ^{\prime}\left( {1/4} \right)}}{{\Gamma \left( {1/4} \right)}} $$
(20)

On the other hand, we have.

\(\int_{ - \infty }^{\infty } {\ln \left| u \right|^{2} \left| {F_{A}^{H} (u)} \right|^{2} } {\text{d}}u\)\(= 4\int_{0}^{\infty } {\ln \left| u \right|^{2} \left| {F_{A} (u)} \right|^{2} } {\text{d}}u\).

Here we note that if \(F_{A} (u)\) is odd, then \(F_{A} ( - u) = - F_{A} (u)\), so here we set \(u^{\prime} = - u\), then by considering the irrelevance of variable form we will obtain

$$ \int_{0}^{\infty } {\ln \left| u \right|^{2} \left| {F_{A} (u)} \right|^{2} } {\text{d}}u = \int_{0}^{ - \infty } {\ln \left| { - u^{\prime}} \right|^{2} \left| {F_{A} ( - u^{\prime})} \right|^{2} } d( - u^{\prime}) $$

\(= \int_{0}^{ - \infty } {\ln \left| { - u^{\prime}} \right|^{2} \left| { - F_{A} (u^{\prime})} \right|^{2} } d( - u^{\prime})\)\(= \int_{ - \infty }^{0} \ln \left| u \right|^{2} \left| {F_{A} (u)} \right|^{2} {\text{d}}u\).

Similarly, if \(F_{A} (u)\) is even, then \(F_{A} ( - u) = F_{A} (u)\), we have the same result as follows:

\(\int_{0}^{\infty } {\ln \left| u \right|^{2} \left| {F_{A} (u)} \right|^{2} } {\text{d}}u\)\(= \int_{ - \infty }^{0} {\ln \left| u \right|^{2} \left| {F_{A} (u)} \right|^{2} } {\text{d}}u\).

Therefore, we can obtain.

\(\int_{0}^{\infty } {\ln \left| u \right|^{2} \left| {F_{A} (u)} \right|^{2} } {\text{d}}u\)\(= \frac{1}{2}\int_{ - \infty }^{\infty } {\ln \left| u \right|^{2} \left| {F_{A} (u)} \right|^{2} } {\text{d}}u\).

So we have the relation as follows.

\(\int_{ - \infty }^{\infty } {\ln \left| u \right|^{2} \left| {F_{A}^{H} (u)} \right|^{2} } {\text{d}}u = 2\int_{ - \infty }^{\infty } {\ln \left| u \right|^{2} \left| {F_{A} (u)} \right|^{2} } {\text{d}}u\).

By the same way, we have.

\(\int_{ - \infty }^{\infty } {\ln \left| v \right|^{2} \left| {F_{B}^{H} (v)} \right|^{2} } {\text{d}}v = 2\int_{ - \infty }^{\infty } {\ln \left| v \right|^{2} \left| {F_{B} (v)} \right|^{2} } {\text{d}}v\).

Finally, we obtain the relation in Theorem 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guanlei, X., Xiaogang, X. & Xiaotong, W. Uncertainty relations of the complex signals from generalized Hilbert transform on LCT. SIViP 17, 2697–2704 (2023). https://doi.org/10.1007/s11760-023-02486-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02486-2

Keywords

Navigation