Skip to main content

Advertisement

Log in

Visual soft landing of an autonomous quadrotor on a moving pad using a combined fuzzy velocity control with model predictive control

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Autonomous landing is a vital option for Unmanned Aerial vehicles (UAV), as it can be a fail-safe in many critical cases. This paper demonstrates a complete solution for the soft landing application of a fully autonomous quadrotor on a moving pad considering external disturbance, model uncertainties, and actuators noise. The challenge starts with detecting the specially designed landing pad by an onboard vision system, a robust Algorithm estimates its coordinates precisely using a camera pose estimation. An enhanced Kalman filter by Madgwick data fusion of asynchronous sensors was developed for the best relative pose and heading reference. Different sizes and designs of the ArUco markers were attentively chosen to ensure the best detection at different altitudes and angles of approach. The landing trajectory is dynamically generated based on Jerk optimization, integrating a bio-inspired velocity profile by Fuzzy Logic Controller (FLC) to smoothen the landing. Model Predictive Control (MPC) was opted for quadrotor control to track the generated trajectory in time reference with the rejection of disturbance. The solution presents a soft mechanism for flat surface landing similar to human decision concept and control. The proposed method ensures absorption of the shock of impact, and the optimal tracking of the moving landing pad at less than 4 cm of error in Cartesian coordinates. Experimental results from pad relative pose estimation developed in Python, Data fusion experimentation of Attitude and Heading Reference system (AHRS), and Matlab simulations with a performance comparison between MPC and Proportional Integral Derivative (PID) control validate the effectiveness and reliability of the proposed landing task solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qianfei Zhou, Y.F., Ding, Shuqing: Corrosion inspection and evaluation of crane metal structure based on UAV vision. Signal Image Video Process. 16(1), 5 (2022)

    Google Scholar 

  2. Miranda, V.R., Rezende, A., Rocha, T.L., Azpúrua, H., Pimenta, L.C., Freitas, G.M.: Autonomous navigation system for a delivery drone, arXiv preprint arXiv:2106.08878

  3. Xu, Z.-C., Hu, B.-B., Liu, B., Wang, X., Zhang, H.-T.: Vision-based autonomous landing of unmanned aerial vehicle on a motional unmanned surface vessel. In: 39th Chinese Control Conference (CCC). pp. 6845–6850, IEEE (2020)

  4. Xing, L., Dai, W.: A local feature extraction method for uav-based image registration based on virtual line descriptors. SIViP 15(4), 705–713 (2021)

    Article  Google Scholar 

  5. Danjun, L., Yan, Z., Zongying, S., Geng, L.: Autonomous landing of quadrotor based on ground effect modelling. In: 34th Chinese Control Conference (CCC). pp. 5647–5652. IEEE (2015)

  6. Hu, B., Mishra, S.: A time-optimal trajectory generation algorithm for quadrotor landing onto a moving platform, In: American Control Conference (ACC). pp. 4183–4188. IEEE (2017)

  7. Qi, Y., Jiang, J., Wu, J., Wang, J., Wang, C., Shan, J.: Autonomous landing solution of low-cost quadrotor on a moving platform. Robot. Auton. Syst. 119, 64–76 (2019)

    Article  Google Scholar 

  8. Hervas, J.R., Reyhanoglu, M., Tang, H.: Automatic landing control of unmanned aerial vehicles on moving platforms, In: IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 69–74. IEEE (2014)

  9. Hu, B., Lu, L., Mishra, S.: Fast, safe and precise landing of a quadrotor on an oscillating platform. In: American Control Conference (ACC). pp. 3836–3841. IEEE (2015)

  10. Aguilar-Ibanez, C., Suarez-Castanon, M.S., Gutierrez-Frias, O., Rubio, J.d.J.J., Meda-Campana, A.: A robust control strategy for landing an unmanned aerial vehicle on a vertically moving platform, Complexity (2020)

  11. Schweighofer, G., Pinz, A.: Robust pose estimation from a planar target. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2024–2030 (2006)

    Article  Google Scholar 

  12. Bacik, J., Durovsky, F., Fedor, P., Perdukova, D.: Autonomous flying with quadrocopter using fuzzy control and ArUco markers. Intel. Serv. Robot. 10(3), 185–194 (2017)

    Article  Google Scholar 

  13. Li, B., Wu, J., Tan, X., Wang, B.: Aruco marker detection under occlusion using convolutional neural network. In:2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), pp. 706–711. IEEE (2020)

  14. Wilson, S., Eberle, H., Hayashi, Y., Madgwick, S.O., McGregor, A., Jing, X., Vaidyanathan, R.: Formulation of a new gradient descent MARG orientation algorithm: case study on robot teleoperation. Mech. Syst. Signal Process. 130, 183–200 (2019)

    Article  Google Scholar 

  15. Faria, S., Lima, J., Costa, P.: Sensor fusion for mobile robot localization using extended kalman filter, uwb tof and aruco markers. In: International Conference on Optimization, Learning Algorithms and Applications, pp. 235–250. Springer (2021)

  16. Gautam, A., Sujit, P., Saripalli, S.: Autonomous quadrotor landing using vision and pursuit guidance. IFAC-PapersOnLine 50(1), 10501–10506 (2017)

    Article  Google Scholar 

  17. Das, H., Sridhar, K., Padhi, R.: Bio-inspired landing of quadrotor using improved state estimation. IFAC-PapersOnLine 51(1), 462–467 (2018)

    Article  Google Scholar 

  18. Lee, T., Leok, M., McClamroch, N.H.: Nonlinear robust tracking control of a quadrotor UAV on SE (3). Asian J. Control 15(2), 391–408 (2013)

    Article  MATH  Google Scholar 

  19. Volden,Ø., Stahl, A., Fossen T.I.: Vision-based positioning system for auto-docking of unmanned surface vehicles (USVs). Int. J. Intell. Robot. Appl. 1–18 (2021)

  20. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)

    Article  Google Scholar 

  21. Bouaiss, O., Mechgoug, R., Ajgou, R.: Modeling, control and simulation of quadrotor uav. In: 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), pp. 340–345. IEEE, (2020)

  22. Madgwick, S.: An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Report x-io Univ. Bristol (UK) 25, 113–118 (2010)

    Google Scholar 

  23. Wang, L., Zhang, Z., Sun, P.: Quaternion-based Kalman filter for AHRS using an adaptive-step gradient descent algorithm. Int. J. Adv. Rob. Syst. 12(9), 131 (2015)

    Article  Google Scholar 

  24. Xiong, J.-J., Zheng, E.-H.: Optimal kalman filter for state estimation of a quadrotor uav. Optik 126(21), 2862–2868 (2015)

    Article  Google Scholar 

  25. AG, U.: Neo-6: U-blox 6 gps modules data sheet (2018)

  26. Morelli, E.A.: Estimating noise characteristics from flight test data using optimal fourier smoothing. J. Aircr. 32(4), 689–695 (1995)

    Article  Google Scholar 

  27. Nayak, A., Banavar, R.N., Maithripala, D.H.S.: Stabilizing a spherical pendulum on a quadrotor. Asian J. Control. https://doi.org/10.1002/asjc.2577

  28. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors, In: IEEE International Conference on Robotics and Automation, pp. 2520–2525. IEEE (2011)

  29. Mo, H., Farid, G.: Nonlinear and adaptive intelligent control techniques for quadrotor uav-a survey. Asian J. Control 21(2), 989–1008 (2019)

    Article  MATH  Google Scholar 

  30. Georgiou, T.T., Lindquist, A.: The separation principle in stochastic control, redux. IEEE Trans. Autom. Control 58(10), 2481–2494 (2013)

    Article  MATH  Google Scholar 

  31. Van Willigenburg, L., De Koning, W.L.: Numerical algorithms and issues concerning the discrete-time optimal projection equations. Eur. J. Control. 6(1), 93–110 (2000)

    Article  MATH  Google Scholar 

  32. Bohner, M., Wintz, N.: The linear quadratic tracker on time scales. Int. J. Dyn. Syst. Differ. Equ. 3(4), 423–447 (2011)

    MATH  Google Scholar 

Download references

Funding

No Funds have been received.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oussama Bouaiss or Raihane Mechgoug.

Ethics declarations

Conflict of interest

All authors of this paper declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouaiss, O., Mechgoug, R. & Taleb-Ahmed, A. Visual soft landing of an autonomous quadrotor on a moving pad using a combined fuzzy velocity control with model predictive control. SIViP 17, 21–30 (2023). https://doi.org/10.1007/s11760-022-02199-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02199-y

Keywords

Navigation