Skip to main content
Log in

Dimensionality reduction-based feature extraction and classification on fleece fabric images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This work performs dimensionality reduction-based classification on fleece fabric-based images taken by a thermal camera. In order to convert images into the gray level, a principal component analysis-based dimension reduction stage was proposed. In addition, symmetric central local binary patterns were performed with the help of the proposed method by using the images after dimension reduction process. The local binary pattern features preserve local texture features from different kinds of defective image types. The experimental results showed that combined work has a great classification accuracy. The classification accuracy was reported using two different algorithms: Naive Bayes and K-nearest neighbor classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Karayiannis, Y., Stojanovic, R., Mitropoulos, P., Koulamas, C., Stouraitis, T., Koubias, S. and Papadopoulos, G.: Defect detection and classification on web textile fabric using multiresolution decomposition and neural networks. In: Proceedings of the 6th IEEE International Conference on Electronics, Circuits and Systems, pp. 765–768, (1999)

  2. Stehling, R.O.A., Nascimento, M. and Falcão, A.X.: A compact and efficient image retrieval approach based on border/interior pixel classification. In: International Conference on Information and Knowledge Management, pp. 102–109, (2002)

  3. Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J. and Zabih, R.: Image indexing using color correlograms. In: Computer Society Conference on Computer Vision and Pattern Recognition, pp. 762–768, (1997)

  4. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  5. Mak, K.L., Peng, P.: Detecting defects in textile fabrics with optimal Gabor filters. Int. J. Comput. Sci. 1(4), 274–282 (2006)

    Google Scholar 

  6. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  7. Demir, Ö., Yılmaz Çamurcu, A.: Computer-aided detection of lung nodules using outer surface features. Bio-Med. Mater. Eng. 26(s1), 1213–1222 (2015)

    Article  Google Scholar 

  8. Çelik, H., Dülger, L., Topalbekiroğlu, M.: Development of a machine vision system: real-time fabric defect detection and classification with neural networks. J. Text. Inst. 105(6), 575–585 (2014)

    Article  Google Scholar 

  9. Ponti, M., Nazaré, T.S., Thumé, G.S.: Image quantization as a dimensionality reduction procedure in color and texture feature extraction. Neurocomputing 173, 385–396 (2016)

    Article  Google Scholar 

  10. Hu, M., Tsai, I.: Fabric inspection based on best wavelet packet bases. Text. Res. J. 70(8), 662–670 (2000)

    Article  Google Scholar 

  11. Jianli, L., Baoqi, Z.: Identification of fabric defects based on discrete wavelet transform and back-propagation neural network. J. Text. Inst. 98(4), 355–362 (2007)

    Article  Google Scholar 

  12. Kuo, C.-F.J., Su, T.-L.: Gray relational analysis for recognizing fabric defects. Text. Res. J. 73(5), 461–465 (2003)

    Article  Google Scholar 

  13. Yıldız, K., Buldu, A., Demetgul, M.: A thermal-based defect classification method in textile fabrics with K-nearest neighbor algorithm. J. Ind. Text. 45(5), 780–795 (2016)

  14. Gade, R., Moeslund, T.B.: Thermal cameras and applications: a survey. Mach. Vis. Appl. 25(1), 245–262 (2014)

    Article  Google Scholar 

  15. Jolliffe, I.: Principal Component Analysis, in Wiley StatsRef: Statistics Reference Online. Wiley, New Jersey (2014)

    Google Scholar 

  16. López, M., Ramírez, J., Górriz, J., Salas-Gonzalez, D., Álvarez, I., Segovia, F., Puntonet, C.: Automatic tool for Alzheimer’s disease diagnosis using PCA and Bayesian classification rules. Electron. Lett. 45(8), 389–391 (2009)

    Article  Google Scholar 

  17. Andersen, A.H., Gash, D.M., Avison, M.J.: Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Magn. Reson. Imaging 17(6), 795–815 (1999)

    Article  Google Scholar 

  18. Yoon, U., Lee, J.-M., Im, K., Shin, Y.-W., Cho, B.H., Kim, I.Y., Kwon, J.S., Kim, S.I.: Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. Neuroimage 34(4), 1405–1415 (2007)

    Article  Google Scholar 

  19. López, M., Ramírez, J., Górriz, J., Álvarez, I., Salas-Gonzalez, D., Segovia, F., Chaves, R.: SVM-based CAD system for early detection of the Alzheimer’s disease using kernel PCA and LDA. Neurosci. Lett. 464(3), 233–238 (2009)

    Article  Google Scholar 

  20. Kaymak, S.: Face detection, recognition and reconstruction using eigenfaces. EE574 Detection and Estimation Theory. 4 (2003)

  21. Ismail, I.A., Ramadan, M.A., El Danf, T. and Samak, A.H.: Automatic signature recognition and verification using principal components analysis. In: 5th International Conference on Computer Graphics, Imaging and Visualisation,(CGIV’08) pp. 356–361, (2008)

  22. Gonzalez, R.C., Woods, R.E.: Digital image processing. Prentice hall, Upper Saddle River (2002)

    Google Scholar 

  23. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)

    Article  Google Scholar 

  24. Mäenpää, T., Pietikäinen, M.: Texture analysis with local binary patterns. Handb. Pattern Recognit. Comput. Vis. 3, 197–216 (2005)

    Article  MATH  Google Scholar 

  25. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  26. Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010)

    Article  MATH  Google Scholar 

  27. Zhao, G., Ahonen, T., Matas, J., Pietikäinen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Trans. Image Process. 21(4), 1465–1477 (2012)

    Article  MathSciNet  Google Scholar 

  28. Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P.: Extended local binary patterns for texture classification. Image Vis. Comput. 30(2), 86–99 (2012)

    Article  Google Scholar 

  29. Li, W. and Fritz, M.: Recognizing materials from virtual examples, in Computer Vision—ECCV 2012. Springer, pp. 345–358. (2012)

  30. Qi, X., Xiao, R., Li, C.-G., Qiao, Y., Guo, J., Tang, X.: Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2199–2213 (2014)

    Article  Google Scholar 

  31. Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Local binary patterns for still images. In: Computer Vision Using Local Binary Patterns. pp. 13–47. Springer, London (2011)

  32. Qi, X., Shen, L., Zhao, G., Li, Q., Pietikäinen, M.: Globally rotation invariant multi-scale co-occurrence local binary pattern. Image and Vision Computing. 43, 16–26 (2015)

    Article  Google Scholar 

  33. Verma, M., Raman, B.: Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. J. Vis. Commun. Image Represent. 32, 224–236 (2015)

    Article  Google Scholar 

  34. Xia, M., Lu, W., Yang, J., Ma, Y., Yao, W., Zheng, Z.: A hybrid method based on extreme learning machine and k-nearest neighbor for cloud classification of ground-based visible cloud image. Neurocomputing 160, 238–249 (2015)

    Article  Google Scholar 

  35. Zhou, X., Wang, S., Xu, W., Ji, G., Phillips, P., Sun, P., Zhang, Y.: Detection of Pathological Brain in MRI Scanning Based on Wavelet-Entropy and Naive Bayes Classifier. In: Bioinformatics and Biomedical Engineering. pp. 201–209. Springer, Switzerland (2015)

  36. Sheppard, S., Lawson, N.D., Zhu, L.J.: Accurate identification of polyadenylation sites from 3’end deep sequencing using a Naïve Bayes classifier. Bioinformatics 29(20), 2564–2571 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazim Yildiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, K. Dimensionality reduction-based feature extraction and classification on fleece fabric images. SIViP 11, 317–323 (2017). https://doi.org/10.1007/s11760-016-0939-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0939-9

Keywords

Navigation