Skip to main content
Log in

Speeded up robust features for efficient iris recognition

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Iris recognition system is one of the biometric systems in which the development is growing rapidly. In this paper, speeded up robust features (SURFs) are used for detecting and describing iris keypoints. For feature matching, simple fusion rules are applied at different levels. Contrast-limited adaptive histogram equalization (CLAHE) is applied on the normalized image and is compared with histogram equalization (HE) and adaptive histogram equalization (AHE). The aim is to find the best enhancement technique with SURF and to verify the necessity of iris image enhancement. The recognition accuracy in each case is calculated. Experimental results demonstrate that CLAHE is a crucial enhancement step for SURF-based iris recognition. More keypoints can be extracted with enhancement using CLAHE compared to HE and AHE. This alleviates the problem of feature loss and increases the recognition accuracy. The accuracies of recognition using left and right iris images are 99 and 99.5 %, respectively. Fusion of local distances and choosing suitable fusion rules affect the recognition accuracy, noticeably. The proposed SURF-based algorithm is compared with scale-invariant feature transform, histogram of oriented gradients, maximally stable extremal regions and DAISY. Results show that the proposed algorithm is robust to different image variations and gives the highest recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khan, Y.D., Khan, S.A., Ahmad, F., Islam, S.: Iris recognition using image moments and k-means algorithm. Hindawi Publishing Corporation, (2014)

  2. Turkan, M., Pardas, M., Cetin, A.E.: Edge projections for eye localization. Opt. Eng. 47(4), 047007 (2008)

    Article  Google Scholar 

  3. Turkan, M., Pardas, M., Cetin, A.E.: Human eye localization using edge projections. In: International conference on computer vision theory and applications, pp. 410–415 (2007)

  4. Mansfield, T., Kelly, G., Chandler, D., Kane, J.: Biometric product testing final report, issue 1.0. National Physical Laboratory of UK (2001)

  5. Belcher, C., Du, Y.: Region-based SIFT approach to iris recognition. Opt. Lasers Eng. 47(1), 139–147 (2009)

    Article  Google Scholar 

  6. Mehrotra, H., Majhi, B., Gupta, P.: Annular iris recognition using SURF. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) Pattern recognition and machine intelligence, vol. 5909, pp. 464–469. Springer, Berlin (2009)

    Chapter  Google Scholar 

  7. Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the state-of-the-art. Inf Fusion 14(1), 28–44 (2013)

    Article  Google Scholar 

  8. Walts, E.L.: Data fusion for C3I: a tutorial. In: Command, Control, Communications Intelligence (C3I) Handbook, EW Communications Inc., Palo Alto, CA, pp. 217–226 (1986)

  9. Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. Proc. IEEE 85(1), 6–23 (1997)

    Article  Google Scholar 

  10. Patil, C.M., Patilkulkarani, S.: Iris feature extraction for personal identification using lifting wavelet transform. In: International Conference on Advances in Computing, Control and Telecommunication Technologies, ACT ’09, Trivandrum, Kerala, pp. 764–766 (2009)

  11. Velisavljević, V.: Low-complexity iris coding and recognition based on directionlets. IEEE Trans. Inform. Forensics Secur. 4(3), 410–417 (2009)

    Article  Google Scholar 

  12. Shin, K.Y., Nam, G.P., Jeong, D.S., Cho, D.H., Kang, B.J., Park, K.R., Kim, J.: New iris recognition method for noisy iris images. Pattern Recognit. Lett. 33(8), 991–999 (2012)

    Article  Google Scholar 

  13. He, Y., Ma, Z., Zhang, Y.: Feature extraction of iris based on texture analysis. In: Jin, D., Lin, S. (eds.) Advances in future computer and control systems, vol. 159, pp. 541–546. Springer, Berlin (2012)

    Chapter  Google Scholar 

  14. Hofbauer, H., Rathgeb, C., Uhl, A., Wild, P.: Iris recognition in image domain: quality-metric based comparators. In: Bebis, G., et al. (eds.) Advances in visual computing, vol. 7432, pp. 1–10. Springer, Berlin (2012)

    Chapter  Google Scholar 

  15. Yang, G., Pang, S., Yin, Y., Li, Y., Li, X.: SIFT based iris recognition with normalization and enhancement. Int. Mach. J. Learn. Cyber 4(4), 401–407 (2012)

    Article  Google Scholar 

  16. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  17. Mask, L.: Recognition of human iris patterns for biometric identification. Dissertation, University of Western, Australia (2003)

  18. Ismail, A.I., Ali, H.S., Farag, F.A.: Efficient enhancement and matching for iris recognition using SURF. In: 5th National Symposium on Information Technology: Towards New Smart World (NSITNSW), Riyadh, pp. 1–5 (2015)

  19. Daugman, J.G.: Biometric personal identification system based on iris analysis. U.S. Patent no. 5291560 (1994)

  20. Wyatt, H.J.: A ‘minimum-wear-and-tear’ meshwork for the iris. Vision Res. 40(16), 2167–2176 (2000)

  21. Kim, S.J., Min, B.S., Lim, D.K., Lee, J.H.: Determining parameters in contrast limited adaptive histogram equalization. In: The 7th International Conference on Information Security and Assurance, vol. 21, pp. 204–207 (2013)

  22. Evans, C.: Notes on the OpenSURF Library (2009). http://www.cs.bris.ac.uk/publications/pub_master.jsp?id=2000970. Accessed October (2014)

  23. Brown, M., Lowe, D.: Invariant features from interest point groups. British Machine Vision Conference BMVC 2002 (2002)

  24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  25. Kimmel, R., Zhang, C., Bronstein, A.M., Bronstein, M.M.: Are MSER features really interesting? IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2316–2320 (2011)

    Article  Google Scholar 

  26. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2005, San Diego, CA, vol 1, pp. 886–893 (2005)

  27. Tola, E., Lepetit, V., Fua, P.: DAISY: An efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), (2010)

  28. CASIA-IrisV4 database: http://biometrics.idealtest.org/dbDetailForUser.do?id=4. Accessed August (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathi E. Abd El-Samie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H.S., Ismail, A.I., Farag, F.A. et al. Speeded up robust features for efficient iris recognition. SIViP 10, 1385–1391 (2016). https://doi.org/10.1007/s11760-016-0903-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0903-8

Keywords

Navigation