Skip to main content
Log in

Color image segmentation using adaptive color quantization and multiresolution texture characterization

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents a new hybrid color image segmentation approach, which attempts two different transforms for texture representation and extraction. The 2-D discrete wavelet transform that can express the variance in frequency and direction of textures, and the contourlet transform that represents boundaries even more accurately are applied in our algorithm. The whole segmentation algorithm contains three stages. First, an adaptive color quantization scheme is utilized to obtain a coarse image representation. Then, the tiny regions are combined based on color information. Third, the proposed energy transform function is used as a criterion for image segmentation. The motivation of the proposed method is to obtain the complete and significant objects in the image. Ultimately, according to our experiments on the Berkeley segmentation database, our techniques have more reasonable and robust results than other two widely adopted image segmentation algorithms, and our method with contourlet transform has better performance than wavelet transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tuceryan M., Jain A.K.: “Texture Analysis,” the Handbook of Pattern Recognition and Computer Vision, 2nd edn. World Scientific Publishing Co, Singapore (1998)

    Google Scholar 

  2. McReynolds, T., Blythe, D., Grantham, B., Nelson, S.: Advanced graphics programming techniques using OpenGL, SIGGPAPH 1998, Course Notes (July 1998)

  3. Li Z., Liu C., Liu G., Yang X., Cheng Y.: Statistical thresholding method for infrared images. Pattern Anal. Appl. 14(2), 109–126 (2011)

    Article  MathSciNet  Google Scholar 

  4. Haralick R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  5. Karoui I., Fablet R., Boucher J.-M., Pieczynski W., Augustin J.-M.: Fusion of textural statistics using a similarity measure: application to texture recognition and segmentation. Pattern Anal. Appl. 11(3–4), 425–434 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chaudhuri B.B., Sarkar N.: Texture segmentation using fractal dimension. In: IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 72–77 (1995)

    Google Scholar 

  7. Xia Y., Feng D., Zhao R.: Morphology-based multifractal estimation for texture segmentation. In: IEEE Trans. Image Process. 15(3), 614–623 (2006)

    Google Scholar 

  8. Andrey P., Tarroux P.: Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation. In: IEEE Trans. Pattern Anal. Mach. Intell 20(3), 252– 262 (1998)

    Google Scholar 

  9. Krishnamachari S., Chellappa R.: Multiresolution Gauss-Markov random field models for texture segmentation. In: IEEE Trans. Image Process. 6(2), 251–267 (1997)

    Google Scholar 

  10. Poggi G., Scarpa G., Zerubia J.: Supervised segmentation of remote-sensing images based on a tree-structured MRF model. In: IEEE Trans. Geosci. Remote Sens. 43(8), 1901–1911 (2005)

    Google Scholar 

  11. Besag J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. B 36(2), 192–236 (1974)

    MATH  MathSciNet  Google Scholar 

  12. Woods J.W.: Two-dimensional discrete Markovian fields. In: IEEE Trans. Inf. Theory 18(2), 232–240 (1972)

    MATH  Google Scholar 

  13. Fan G., Xia X.-G.: Wavelet-based texture analysis and synthesis using hidden Markov models. In: IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50(1), 106–120 (2003)

    Article  MathSciNet  Google Scholar 

  14. Baum L.E., Petrie T., Soules G., Weiss N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41(1), 164–171 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen G.Y., Bui T.D., Krzyzak A.: Rotation invariant feature extraction using Ridgelet and Fourier transforms. Pattern Anal. Appl. 9(1), 83–93 (2006)

    Article  MathSciNet  Google Scholar 

  16. Hofmann, T., Puzicha, J., Buhmann, J.M.: An optimization approach to unsupervised Hierarchical texture segmentation. In: Proceeding of IEEE International Conference on Image Processing, vol. 3, pp. 213–216 (1997)

  17. Pichler O., Teuner A., Hosticka B.J.: An unsupervised texture segmentation algorithm with feature space reduction and knowledge feedback. In: IEEE Trans. Image Process. 7(1), 53–61 (1998)

    Google Scholar 

  18. Daugman J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  19. Unser M.: Texture classification and segmentation using wavelet frames. In: IEEE Trans. Image Process. 4(11), 1549–1560 (1995)

    Google Scholar 

  20. Hsin H.C.: Texture segmentation using modulated wavelet transform. In: IEEE Trans. Image Process. 9(7), 1299–1302 (2000)

    Google Scholar 

  21. Lo E.H.S., Pickering M.R., Frater M.R., Arnold J.F.: Image segmentation from scale and rotation invariant texture features from the double dyadic dual-tree complex wavelet transform. Image Vis. Comput. 29(1), 15–28 (2011)

    Article  Google Scholar 

  22. Do M.N., Vetterli M.: The contourlet transform: an efficient directional multiresolution image representation. In: IEEE Trans. Image Process. 14(2), 2091–2106 (2005)

    MathSciNet  Google Scholar 

  23. Krinidis M., Pitas I.: Color texture segmentation based on the modal energy of deformable surfaces. In: IEEE Trans. Image Process. 18(7), 1613–1621 (2009)

    MathSciNet  Google Scholar 

  24. Mallat S.: A theory for multiresolution signal decomposition: the wavelet representation. In: IEEE Pattern Anal. Machine Intell. 11(7), 674–693 (1989)

    MATH  Google Scholar 

  25. MacQueen, J.B.: Some Methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 281–297 (1967)

  26. Lloyd S.P: Least squares quantization in PCM. In: IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    MATH  MathSciNet  Google Scholar 

  27. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceeding of 8th International Conference on Computer Vision, vol. 2, pp. 416–423 (July 2001)

  28. Pun, C.-M., An, N.-Y., Cheng, M.: A region-based image segmentation by watershed partition and DCT energy compaction. In: International Conference on Computer Graphics, Imaging and Visualization (CGIV), Singapore (Aug. 2011)

  29. Comaniciu D., Meer P.: Mean shift: a robust approach toward feature space analysis. In: IEEE Trans. Pattern Analy. Mach. Intell. 24(5), 603–619 (2002)

    Google Scholar 

  30. Felzenszwalb P.F., Huttenlocher D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  31. Pantofaru, C., Hebert, M.: A comparison of image segmentation algorithms. Robotics Institute, Carnegie Mellon Univ., Tech. Rep. CMU-RI-TR-05-40, Sept. (2005)

  32. Meila, M.: Comparing clusterings: an axiomatic view. In: Proceeding of International on Conference on Machine Learning, Bonn, Germany, pp. 577–584 (Aug. 2005)

  33. Freixenet, J., Munoz, X., Raba, D., Marti, J., Cufi, X.: Yet another survey on image segmentation: region and boundary information integration. In: Proceeding of 7th European Conference on Computer Vision III, Copenhagen, Denmark, vol. 2352, pp. 21–25 (May 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Man Pun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, NY., Pun, CM. Color image segmentation using adaptive color quantization and multiresolution texture characterization. SIViP 8, 943–954 (2014). https://doi.org/10.1007/s11760-012-0340-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0340-2

Keywords

Navigation