Skip to main content
Log in

A central limit theorem for sums of functions of residuals in a high-dimensional regression model with an application to variance homoscedasticity test

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

We establish a joint central limit theorem for sums of squares and the fourth powers of residuals in a high-dimensional regression model. We then apply this CLT to detect the existence of heteroscedasticity for linear regression models without assuming randomness of covariates when the sample size n tends to infinity and the number of covariates p may be fixed or tend to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amari SV, Misra RB (1997) Closed-form expressions for distribution of sum of exponential random variables. IEEE Trans Reliab 46(4):519–522

    Article  Google Scholar 

  • Azzalini A, Bowman A (1993) On the use of nonparametric regression for checking linear relationships. J R Stat Soc Ser B Methodol 55(2):549–557

    MathSciNet  MATH  Google Scholar 

  • Bai Z, Silverstein JW (2010) Spectral analysis of large dimensional random matrices. Springer, Berlin

    Book  Google Scholar 

  • Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. Econom J Econom Soc 47(5):1287–1294

    MathSciNet  MATH  Google Scholar 

  • Cook RD, Weisberg S (1983) Diagnostics for heteroscedasticity in regression. Biometrika 70(1):1–10

    Article  MathSciNet  Google Scholar 

  • de Jong P (1987) A central limit theorem for generalized quadratic forms. Probab Theory Relat Fields 75(2):261–277

    Article  MathSciNet  Google Scholar 

  • Dette H, Munk A (1998) Testing heteroscedasticity in nonparametric regression. J R Stat Soc Ser B Stat Methodol 60(4):693–708

    Article  MathSciNet  Google Scholar 

  • Deya A, Nourdin I (2014) Invariance principles for homogeneous sums of free random variables. Bernoulli 20(2):586–603

    Article  MathSciNet  Google Scholar 

  • Glejser H (1969) A new test for heteroskedasticity. J Am Stat Assoc 64(325):316–323

    Article  Google Scholar 

  • Gotze F, Tikhomirov AN (1999) Asymptotic distribution of quadratic forms. Ann Probab 27(2):1072–1098

    Article  MathSciNet  Google Scholar 

  • Harrison MJ, McCabe BPM (1979) A test for heteroscedasticity based on ordinary least squares residuals. J Am Stat Assoc 74(366a):494–499

    Article  MathSciNet  Google Scholar 

  • Jensen DR, Solomon H (1972) A Gaussian approximation to the distribution of a definite quadratic form. J Am Stat Assoc 67(340):898–902

    MATH  Google Scholar 

  • John S (1971) Some optimal multivariate tests. Biometrika 58(1):123–127

    MathSciNet  MATH  Google Scholar 

  • Li Z, Yao J (2015) Homoscedasticity tests valid in both low and high-dimensional regressions. arXiv preprint arXiv:1510.00097

  • Liu H, Tang Y, Zhang HH (2009) A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Comput Stat Data Anal 53(4):853–856

    Article  MathSciNet  Google Scholar 

  • Nourdin I, Peccati G, Reinert G et al (2010) Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos. Ann Probab 38(5):1947–1985

    Article  MathSciNet  Google Scholar 

  • Nourdin I, Peccati G, Poly G, Simone R (2016) Multidimensional limit theorems for homogeneous sums: a survey and a general transfer principle. ESAIM Probab Stat 20:293–308

    Article  MathSciNet  Google Scholar 

  • White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econom J Econom Soc 48(4):817–838

    MathSciNet  MATH  Google Scholar 

  • Whittle P (1964) On the convergence to normality of quadratic forms in independent variables. Theory Probab Appl 9(1):103–108

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Yin.

Additional information

Zhidong Bai is partially supported by a Grant NSF China 11571067 and 11471140. Guangming Pan was partially supported by a MOE Tier 2 Grant 2014-T2-2-060 and by a MOE Tier 1 Grant RG25/14 at the Nanyang Technological University, Singapore. Yanqing Yin was partially supported by a Grant NSF China 11701234, the Priority Academic Program Development of Jiangsu Higher Education Institutions and a project of China Scholarship Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Pan, G. & Yin, Y. A central limit theorem for sums of functions of residuals in a high-dimensional regression model with an application to variance homoscedasticity test. TEST 27, 896–920 (2018). https://doi.org/10.1007/s11749-017-0575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-017-0575-x

Keywords

Mathematics Subject Classification

Navigation