Skip to main content
Log in

Bootstrap-based model selection criteria for beta regressions

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

This paper addresses the issue of model selection in the beta regression model focused on small samples. The Akaike information criterion (AIC) is a model selection criterion widely used in practical applications. The AIC is an estimator of the expected log-likelihood value, and measures the discrepancy between the true model and the estimated model. In small samples, the AIC is biased and tends to select overparameterized models. To circumvent that problem, we propose two new selection criteria, namely: the bootstrapped likelihood quasi-CV and its 632QCV variant. We use Monte Carlo simulation to compare the finite sample performances of the two proposed criteria to those of the AIC and its variations that use the bootstrapped log-likelihood in the class of varying dispersion beta regressions. The numerical evidence shows that the proposed model selection criteria perform well in small samples. We also present and discuss and empirical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For details on the BFGS algorithm, see Press et al. (1992).

  2. The use of these criteria in beta regression models is done in an ad hoc manner.

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the second international symposium on information theory, pp 267–281

  • Allen D (1974) The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16:125–127

    Article  MATH  MathSciNet  Google Scholar 

  • Bayer FM, Cribari-Neto F (2015) Model selection criteria in beta regression with varying dispersion. Commun Stat Simul Comp. doi:10.1080/03610918.2014.977918

  • Bengtsson T, Cavanaugh J (2006) An improved Akaike information criterion for state-space model selection. Comput Stat Data Anal 50(10):2635–2654

    Article  MATH  MathSciNet  Google Scholar 

  • Brehm J, Gates S (1993) Donut shops and speed traps: evaluating models of supervision on police behavior. Am J Polit Sci 37(2):555–581

    Article  Google Scholar 

  • Breiman L, Spector P (1992) Submodel selection and evaluation in regression: the X-random case. Int Stati Rev 60:291–319

    Article  Google Scholar 

  • Caby E (2000) Review: regression and time series model selection. Technometrics 42(2):214–216

    Google Scholar 

  • Cavanaugh J (1997) Unifying the derivations for the Akaike and corrected Akaike information criteria. Statist Probab Lett 33(2):201–208

    Article  MATH  MathSciNet  Google Scholar 

  • Cavanaugh JE, Shumway RH (1997) A bootstrap variant of AIC for state-space model selection. Stat Sin 7:473–496

    MATH  MathSciNet  Google Scholar 

  • Cribari-Neto F, Souza T (2012) Testing inference in variable dispersion beta regressions. J Statist Comput Simul 82(12)

  • Davies S, Neath A, Cavanaugh J (2005) Cross validation model selection criteria for linear regression based on the Kullback–Leibler discrepancy. Stat Methodol 2(4):249–266

    Article  MATH  MathSciNet  Google Scholar 

  • Doornik J (2007) An object-oriented matrix language Ox 5. Timberlake Consultants Press, London. http://www.doornik.com/

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26

    Article  MATH  MathSciNet  Google Scholar 

  • Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78(382):316–331

    Article  MATH  MathSciNet  Google Scholar 

  • Efron B (1986) How biased is the apparent error rate of a prediction rule? J Am Stat Assoc 81(393):461–470

    Article  MATH  MathSciNet  Google Scholar 

  • Efron B, Tibshirani R (1997) Improvements on cross-validation: the 632+ bootstrap method. J Am Stat Assoc 92(438):548–560

  • Ferrari SLP, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31(7):799–815

    Article  MATH  MathSciNet  Google Scholar 

  • Ferrari SLP, Pinheiro EC (2011) Improved likelihood inference in beta regression. J Stat Comput Simul 81(4):431–443

    Article  MATH  MathSciNet  Google Scholar 

  • Frazer LN, Genz AS, Fletcher CH (2009) Toward parsimony in shoreline change prediction (i): basis function methods. J Coastal Res 25(2):366–379

    Article  Google Scholar 

  • Griffiths WE, Hill RC, Judge GG (1993) Learning and practicing econometrics. Wiley, New York

    Google Scholar 

  • Hancox D, Hoskin CJ, Wilson RS (2010) Evening up the score: sexual selection favours both alternatives in the colour-polymorphic ornate rainbowfish. Anim Behav 80(5):845–851

    Article  Google Scholar 

  • Hannan EJ, Quinn BG (1979) The determination of the order of an autoregression. J Roy Stat Soc Ser B 41(2):190–195

    MATH  MathSciNet  Google Scholar 

  • Hjorth JSU (1994) Computer intensive statistical methods: validation, model selection and Bootstrap. Chapman and Hall

  • Hu B, Shao J (2008) Generalized linear model selection using \(\text{ R }^2\). J Stat Plan Inf 138(12):3705–3712

    Article  MATH  MathSciNet  Google Scholar 

  • Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76(2):297–307

    Article  MATH  MathSciNet  Google Scholar 

  • Ishiguro M, Sakamoto Y (1991) WIC: an estimation-free information criterion., Research memorandumInstitute of Statistical Mathematics, Tokyo

    Google Scholar 

  • Ishiguro M, Sakamoto Y, Kitagawa G (1997) Bootstrapping log likelihood and EIC, an extension of AIC. Ann Inst Stat Math 49(3):411–434

    Article  MATH  MathSciNet  Google Scholar 

  • Kieschnick R, McCullough BD (2003) Regression analysis of variates observed on (0, 1): percentages, proportions and fractions. Stat Modell 3(3):193–213

    Article  MathSciNet  Google Scholar 

  • Koenker R, Yoon J (2009) Parametric links for binary choice models: a fisherian-bayesian colloquy. J Econ 152(2):120–130

    Article  MathSciNet  Google Scholar 

  • Kullback S (1968) Information theory and statistics. Dover

  • Liang H, Zou G (2008) Improved aic selection strategy for survival analysis. Comput Stat Data Anal 52:2538–2548

    Article  MATH  MathSciNet  Google Scholar 

  • McCullagh P, Nelder J (1989) Generalized linear models, 2nd edn. Chapman and Hall

  • McQuarrie A, Shumway R, Tsai CL (1997) The model selection criterion AICu. Statist Probab Lett 34(3):285–292

    Article  MATH  MathSciNet  Google Scholar 

  • McQuarrie A, Tsai CL (1998) Regression and time series model selection. World Scientific, Singapure

    Book  MATH  Google Scholar 

  • McQuarrie A (1999) A small-sample correction for the Schwarz SIC model selection criterion. Statist Probab Lett 44(1):79–86

    Article  MATH  MathSciNet  Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78(3):691–692

    Article  MATH  MathSciNet  Google Scholar 

  • Pan W (1999) Bootstrapping likelihood for model selection with small samples. J Comput Graph Stat 8(4):687–698

    Google Scholar 

  • Paulino CDM, Pereira CAB (1994) On identifiability of parametric statistical models. J Ital Stat Soc 3(1):125–151

    Article  MATH  Google Scholar 

  • Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rothenberg TJ (1971) Identification in parametric models. Econometrica 39(3):577–591

    Article  MATH  MathSciNet  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MATH  Google Scholar 

  • Seghouane AK (2010) Asymptotic bootstrap corrections of AIC for linear regression models. Signal Process 90:217–224

    Article  MATH  Google Scholar 

  • Shang J, Cavanaugh J (2008) Bootstrap variants of the Akaike information criterion for mixed model selection. Comput Stat Data Anal 52(4):2004–2021

    Article  MATH  MathSciNet  Google Scholar 

  • Shao J (1996) Bootstrap model selection. J Am Stat Assoc 91(434):655–665

    Article  MATH  Google Scholar 

  • Shi P, Tsai CL (2002) Regression model selection: a residual likelihood approach. J Roy Stat Soc Ser B 64(2):237–252

    Article  MATH  MathSciNet  Google Scholar 

  • Shibata R (1997) Bootstrap estimate of Kullback–Leibler information for model selection. Stat Sin 7:375–394

    MATH  Google Scholar 

  • Simas AB, Barreto-Souza W, Rocha AV (2010) Improved estimators for a general class of beta regression models. Comput Stat Data Anal 54(2):348–366

    Article  MATH  MathSciNet  Google Scholar 

  • Smithson M, Verkuilen J (2006) A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol Methods 11(1):54–71

    Article  Google Scholar 

  • Sugiura N (1978) Further analysts of the data by Akaike’s information criterion and the finite corrections—further analysts of the data by Akaike’s. Commun Stat Theor M 7(1):13–26

    Article  MathSciNet  Google Scholar 

  • Verhaelen K, Bouwknegt M, Carratalà A, Lodder-Verschoor F, Diez-Valcarce M, Rodríguez-Lázaro D, de Roda Husman AM, Rutjes SA (2013) Virus transfer proportions between gloved fingertips, soft berries, and lettuce, and associated health risks. Int J Food Microbiol 166(3):419–425

    Article  Google Scholar 

  • Whiteman A, Young DE, He X, Chen TC, Wagenaar RC, Stern C, Schon K (2014) Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behav Brain Res 259(1):302–312

    Article  Google Scholar 

  • Winkelmann R (2008) Econometric analysis of count data, 5th edn. Springer, p 320

  • Zucco C (2008) The president’s “new” constituency: Lula and the pragmatic vote in Brazil’s 2006 presidential elections. J Lat Am Stud 40(1):29–49

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge partial financial support from CAPES, CNPq, and FAPERGS. We also thank two referees for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio M. Bayer.

Appendix A: score function and information matrix of the beta regression model with varying dispersion

Appendix A: score function and information matrix of the beta regression model with varying dispersion

This appendix presents the score function and Fisher’s information matrix for the varying dispersion beta regression model described in Sect. 3.

The score function is obtained by differentiating the log-likelihood function with respect to the unknown parameters. The score function of \(\log f(Y|\theta _{k})\) with respect to \({\beta }\) is given by

$$\begin{aligned} U_{\!\beta }({\beta },{\gamma })!= X^{\top } \Phi \, T({y}^{*}-{\mu }^{*}), \end{aligned}$$

where \(\Phi \!= \!\text {diag}\! \left\{ \frac{1\!-\! \sigma ^2_1}{\sigma ^2_1},\ldots ,\frac{1\!-\sigma ^2_n}{\sigma ^2_n} \right\} \), \(T \!=\! \text {diag}\left\{ \frac{1}{g^{\prime }(\mu _1)},\ldots ,\frac{1}{g^{\prime }(\mu _n)}\right\} \), \({y}^{*}\!=\!(y^{*}_1,\ldots ,y^{*}_n)^{\top }\), \({\mu }^{*}\!=\!(\mu ^{*}_1,\ldots ,\mu ^{*}_n)^{\top }\), \(y^{*}_t \! = \log \left( \frac{y_t}{1-y_t} \right) \), \(\mu ^{*}_t= \psi \left( \mu _t\left( \frac{1-\sigma ^2_t}{\sigma ^2_t}\right) \right) - \psi \left( (1-\mu _t)\left( \frac{1-\sigma ^2_t}{\sigma ^2_t}\right) \right) \) and \(\psi (\cdot )\) is the digamma function, i.e., \(\psi (u)\!=\frac{\partial \log \Gamma (u)}{\partial u}\), for \(u>0\). The score function of \(\log f(Y|\theta _{k})\) with respect to \({\gamma }\) is

$$\begin{aligned} U_{\!\gamma }({\beta },{\gamma })=Z^{\top }H {a}, \end{aligned}$$

where \(H\! = \!\text {diag} \!\left\{ \! \frac{1}{h^{\prime }(\sigma _1)}, \ldots , \frac{1}{h^{\prime }(\sigma _n)} \!\right\} \) and \({a}= ( a_1,\) \( \ldots ,a_n)^{\top }\), the \(t\)th element of \(a\) being \(a_t = -\frac{2}{\sigma ^3_t} \left\{ \mu _t \left( y^*_t - \mu ^*_t \right) + \log (1-y_t) - \psi \left( (1-\mu _t)(1-\sigma ^2_t)/\sigma ^2_t \right) + \psi \right. \left. \left( (1-\sigma ^2_t) / \sigma ^2_t \right) \right\} \).

Fisher’s information matrix for \({\beta }\) and \({\gamma }\) is given by

$$\begin{aligned} K({\beta },{\gamma }) = \left( \begin{array}{cc} K_{({\beta },{\beta })} &{}\quad K_{({\beta },{\gamma })} \\ K_{({\gamma },{\beta })} &{}\quad K_{({\gamma },{\gamma })} \end{array} \right) , \end{aligned}$$

where \(K_{({\beta },{\beta })} = X^{\top }\Phi WX \), \(K_{({\beta },{\gamma })} = (K_{({\gamma },{\beta })})^{\top }=X^{\top }CTHZ\) and \(K_{({\gamma },{\gamma })}=Z^{\top }DZ\). Also, we have \(W = \text {diag}\{w_1,\ldots ,w_n\}\), \(C = \text {diag}\{c_1,\ldots ,c_n\}\) and \(D = \text {diag}\{d_1,\ldots ,d_n\}\), where

$$\begin{aligned} w_t&= \frac{(1-\sigma _t^2)}{\sigma _t^2}\left[ \psi ' \left( \frac{\mu _t(1-\sigma _t^2)}{\sigma _t^2}\right) + \psi ' \left( \frac{(1-\mu _t)(1-\sigma _t^2)}{\sigma _t^2}\right) \right] \frac{1}{\left[ g'(\mu _t)\right] ^2}, \\ c_t&= \frac{(2-2\sigma _t^2)}{\sigma _t^5}\left[ \mu _t\psi ' \left( \frac{\mu _t(1-\sigma _t^2)}{\sigma _t^2}\right) -(1-\mu _t) \psi ' \left( \frac{(1-\mu _t)(1-\sigma _t^2)}{\sigma _t^2}\right) \right] , \text { and } \\ d_t&= \frac{4}{\sigma _t^6}\!\left[ \!\mu _t^2\psi ' \left( \!\frac{\mu _t(1\!-\!\sigma _t^2)}{\sigma _t^2}\!\right) \!\! -(1\!-\!\mu _t)^2 \psi ' \left( \!\frac{(1\!-\!\mu _t)(1\!-\!\sigma _t^2)}{\sigma _t^2}\!\right) \!\!-\psi ' \left( \!\frac{(1\!-\!\sigma _t^2)}{\sigma _t^2}\!\right) \!\right] \\&\quad \times \frac{1}{\left[ h'(\sigma _t)\right] ^2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, F.M., Cribari-Neto, F. Bootstrap-based model selection criteria for beta regressions. TEST 24, 776–795 (2015). https://doi.org/10.1007/s11749-015-0434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-015-0434-6

Keywords

Mathematics Subject Classification

Navigation