Skip to main content

Advertisement

Log in

Current status of right ventricular outflow tract reconstruction: complete translation of a review article originally published in Kyobu Geka 2014;67:65–77

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Right ventricular outflow tract (RVOT) reconstruction is becoming more prevalent as the number of adult patients who require repeated surgery long after definitive repair of congenital heart defects during childhood has increased. Early primary repair and annulus-preserving surgery have been the two current strategies of RVOT reconstruction from the viewpoint of timing and indications for surgical intervention; however, the long-term outcomes of both procedures remain unknown. Although various materials have been used for pulmonary valve replacement during RVOT reconstruction, deficient durability due primarily to immunological rejection frequently arises, particularly when implanted into young patients. A multicenter study in Japan showed that the clinical outcomes of expanded polytetrafluoroethylene (ePTFE) valved patches/conduits that we developed and manufactured comprised an excellent alternative material for RVOT reconstruction. Such enhanced outcomes might have partly been attributable to the biocompatibility and low antigenicity of ePTFE, and also to the fluid dynamic properties arising from the structural characteristics of a bulging sinus and a fan-shaped valve. However, numerous issues concerning RVOT reconstruction, such as indications for and the timing of definitive repair, as well as the choice of materials for pulmonary valve replacement, must be resolved to achieve better patient prognoses and quality of life. This review describes recent surgical strategies and outstanding issues associated with RVOT reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Warnes CA, Liberthson R, Danielson GK, Dore A, Harris L, Hoffman JI, et al. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol. 2001;37:1170–5.

    Article  CAS  PubMed  Google Scholar 

  2. Babu-Narayan SV. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation. 2006;113:405–13.

    Article  CAS  PubMed  Google Scholar 

  3. Wessel HU, Paul MH. Exercise studies in tetralogy of Fallot: a review. Pediatr Cardiol. 1999;20:39–47.

    Article  CAS  PubMed  Google Scholar 

  4. Gatzoulis MA, Balaji S, Webber SA, Siu SC, Hokanson JS, Poile C, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000;356:975–81.

    Article  CAS  PubMed  Google Scholar 

  5. Schamberger MS, Hurwitz RA. Course of right and left ventricular function in patients with pulmonary insufficiency after repair of tetralogy of fallot. Pediatr Cardiol. 2000;21:244–8.

    Article  CAS  PubMed  Google Scholar 

  6. Broberg CS, Aboulhosn J, Mongeon F-P, Kay J, Valente AM, Khairy P, et al. Prevalence of left ventricular systolic dysfunction in adults with repaired tetralogy of fallot. Am J Cardiol. 2011;107:1215–20.

    Article  PubMed  Google Scholar 

  7. Davlouros PA, Kilner PJ, Hornung TS, Li W, Francis JM, Moon JCC, et al. Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol. 2002;40:2044–52.

    Article  PubMed  Google Scholar 

  8. Davlouros PA, Karatza AA, Gatzoulis MA, Shore DF. Timing and type of surgery for severe pulmonary regurgitation after repair of tetralogy of Fallot. Int J Cardiol. 2004;97:91–101.

    Article  PubMed  Google Scholar 

  9. Singh GK, Greenberg SB, Yap YS, Delany DP, Keeton BR, Monro JL. Right ventricular function and exercise performance late after primary repair of tetralogy of Fallot with the transannular patch in infancy. Am J Cardiol. 1998;81:1378–82.

    Article  CAS  PubMed  Google Scholar 

  10. Uebing A, Fischer G, Bethge M, Scheewe J, Schmiel F, Stieh J, et al. Influence of the pulmonary annulus diameter on pulmonary regurgitation and right ventricular pressure load after repair of tetralogy of Fallot. Heart. 2002;88:510–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Parry AJ, McElhinney DB, Kung GC, Reddy VM, Brook MM, Hanley FL. Elective primary repair of acyanotic tetralogy of Fallot in early infancy: overall outcome and impact on the pulmonary valve. J Am Coll Cardiol. 2000;36:2279–83.

    Article  CAS  PubMed  Google Scholar 

  12. Latus H, Gummel K, Rupp S, Valeske K, Akintuerk H, Jux C, et al. Beneficial effects of residual right ventricular outflow tract obstruction on right ventricular volume and function in patients after repair of tetralogy of Fallot. Pediatr Cardiol. 2013;34:424–30.

    Article  PubMed  Google Scholar 

  13. van der Hulst AE, Hylkema MG, Vliegen HW, Delgado V, Hazekamp MG, Rijlaarsdam MEB, et al. Mild residual pulmonary stenosis in tetralogy of Fallot reduces risk of pulmonary valve replacement. Ann Thorac Surg. 2012;94:2077–82.

    Article  PubMed  Google Scholar 

  14. Stewart RD, Backer CL, Young L, Mavroudis C. Tetralogy of Fallot: results of a pulmonary valve-sparing strategy. Ann Thorac Surg. 2005;80:1431–9.

    Article  PubMed  Google Scholar 

  15. Boni L, García E, Galletti L, Pérez A, Herrera D, Ramos V, et al. Current strategies in tetralogy of Fallot repair: pulmonary valve sparing and evolution of right ventricle/left ventricle pressures ratio. Eur J Cardiothorac Surg. 2009;35:885–90.

    Article  PubMed  Google Scholar 

  16. Gladman G, McCrindle BW, Williams WG, Freedom RM, Benson LN. The modified Blalock-Taussig shunt: clinical impact and morbidity in Fallot’s tetralogy in the current era. J Thorac Cardiovasc Surg. 1997;114:25–30.

    Article  CAS  PubMed  Google Scholar 

  17. Hirsch JC, Mosca RS, Bove EL. Complete repair of tetralogy of Fallot in the neonate: results in the modern era. Ann Surg. 2000;232:508–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bacha EA, Scheule AM, Zurakowski D, Erickson LC, Hung J, Lang P, et al. Long-term results after early primary repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2001;122:154–61.

    Article  CAS  PubMed  Google Scholar 

  19. Pigula FA, Khalil PN, Mayer JE, del Nido PJ, Jonas RA. Repair of tetralogy of Fallot in neonates and young infants. Circulation. 1999;100(Suppl2)(2):II157–61.

    Google Scholar 

  20. Tamesberger MI, Lechner E, Mair R, Hofer A, Sames-Dolzer E, Tulzer G. Early primary repair of tetralogy of Fallot in neonates and infants less than four months of age. Ann Thorac Surg. 2008;86:1928–35.

    Article  PubMed  Google Scholar 

  21. Steiner MB, Tang X, Gossett JM, Malik S, Prodhan P. Timing of complete repair of non–ductal-dependent tetralogy of Fallot and short-term postoperative outcomes, a multicenter analysis. J Thorac Cardiovasc Surg. 2014;147:1299–305.

    Article  PubMed  Google Scholar 

  22. Hayes CJ, Gersony WM, Driscoll DJ, Keane JF, Kidd L, O’Fallon WM, et al. Second natural history study of congenital heart defects. Results of treatment of patients with pulmonary valvular stenosis. Circulation. 1993;87(Suppl):I28–37.

    CAS  PubMed  Google Scholar 

  23. Oechslin EN, Harrison DA, Harris L, Downar E, Webb GD, Siu SS, et al. Reoperation in adults with repair of tetralogy of Fallot: indications and outcomes. J Thorac Cardiovasc Surg. 1999;118:245–51.

    Article  CAS  PubMed  Google Scholar 

  24. Knauth AL, Gauvreau K, Powell AJ, Landzberg MJ, Walsh EP, Lock JE, et al. Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart. 2008;94:211–6.

    Article  CAS  PubMed  Google Scholar 

  25. Discigil B, Dearani JA, Puga FJ, Schaff HV, Hagler DJ, Warnes CA, et al. Late pulmonary valve replacement after repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2001;121:344–51.

    Article  CAS  PubMed  Google Scholar 

  26. van Huysduynen BH. Reduction of QRS duration after pulmonary valve replacement in adult Fallot patients is related to reduction of right ventricular volume. Eur Heart J. 2005;26:928–32.

    Article  PubMed  Google Scholar 

  27. Therrien J, Provost Y, Merchant N, Williams W, Colman J, Webb G. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol. 2005;95:779–82.

    Article  PubMed  Google Scholar 

  28. Oosterhof T, van Straten A, Vliegen HW, Meijboom FJ, van Dijk APJ, Spijkerboer AM, et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation. 2007;116:545–51.

    Article  PubMed  Google Scholar 

  29. Dave HH, Buechel ERV, Dodge-Khatami A, Kadner A, Rousson V, Bauersfeld U, et al. Early insertion of a pulmonary valve for chronic regurgitation helps restoration of ventricular dimensions. Ann Thorac Surg. 2005;80:1615–21.

    Article  PubMed  Google Scholar 

  30. Tweddell JS, Simpson P, Li SH, Dunham-Ingle J, Bartz PJ, Earing MG, et al. Timing and technique of pulmonary valve replacement in the patient with tetralogy of Fallot. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2012;15:27–33.

    Article  PubMed  Google Scholar 

  31. Harrild DM, Berul CI, Cecchin F, Geva T, Gauvreau K, Pigula F, et al. Pulmonary valve replacement in tetralogy of Fallot: impact on survival and ventricular tachycardia. Circulation. 2009;119:445–51.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Urso S, Rega F, Meuris B, Gewillig M, Eyskens B, Daenen W, et al. The Contegra conduit in the right ventricular outflow tract is an independent risk factor for graft replacement. Eur J Cardiothorac Surg. 2011;40:603–9.

    PubMed  Google Scholar 

  33. Christenson JT, Sierra J, Manzano NEC, Jolou J, Beghetti M, Kalangos A. Homografts and xenografts for right ventricular outflow tract reconstruction: long-term results. Ann Thorac Surg. 2010;90(4):1287–93.

    Article  PubMed  Google Scholar 

  34. Lange R, Weipert J, Homann M, Mendler N, Paek SU, Holper K, et al. Performance of allografts and xenografts for right ventricular outflow tract reconstruction. Ann Thorac Surg. 2001;71(5 Suppl):S365–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sinzobahamvya N, Wetter J, Blaschczok HC, Cho MY, Brecher AM, Urban AE. The fate of small-diameter homografts in the pulmonary position. Ann Thorac Surg. 2001;72:2070–6.

    Article  CAS  PubMed  Google Scholar 

  36. Askovich B, Hawkins JA, Sower CT, Minich LL, Tani LY, Stoddard G, et al. Right ventricle–to–pulmonary artery conduit longevity: is it related to allograft size? Ann Thorac Surg. 2007;84:907–12.

    Article  PubMed  Google Scholar 

  37. Karamlou T, Blackstone EH, Hawkins JA, Jacobs ML, Kanter KR, Brown JW, et al. Can pulmonary conduit dysfunction and failure be reduced in infants and children less than age 2 years at initial implantation? J Thorac Cardiovasc Surg. 2006;132(829–838):e5.

    Google Scholar 

  38. Vogt PR, Stallmach T, Niederhäuser U, Schneider J, Zünd G, Lachat M, et al. Explanted cryopreserved allografts: a morphological and immunohistochemical comparison between arterial allografts and allograft heart valves from infants and adults. Eur J Cardiothorac Surg. 1999;15:639–44.

    Article  CAS  PubMed  Google Scholar 

  39. Rajani B, Mee RB, Ratliff NB. Evidence for rejection of homograft cardiac valves in infants. J Thorac Cardiovasc Surg. 1998;115:111–7.

    Article  CAS  PubMed  Google Scholar 

  40. Konuma T, Devaney EJ, Bove EL, Gelehrter S, Hirsch JC, Tavakkol Z, et al. Performance of cryovalve SG decellularized pulmonary allografts compared with standard cryopreserved allografts. Ann Thorac Surg. 2009;88:849–55.

    Article  PubMed  Google Scholar 

  41. Ruzmetov M, Shahh JJ, Geiss DM, Fortuna RS. Decellularized versus standard cryopreserved valve allografts for right ventricular outflow tract reconstruction: a single-institution comparison. J Thorac Cardiovasc Surg. 2012;143:543–9.

    Article  PubMed  Google Scholar 

  42. Kadoba K, Armiger LC, Sawatari K, Jonas RA. Mechanical durability of pulmonary allograft conduits at systemic pressure. Angiographic and histologic study in lambs. J Thorac Cardiovasc Surg. 1993;105:132–41.

    CAS  PubMed  Google Scholar 

  43. DeLeon SY, Tuchek JM, Bell TJ, Hofstra J, Vitullo DA, Quinones JA, et al. Early pulmonary homograft failure from dilatation due to distal pulmonary artery stenosis. Ann Thorac Surg. 1996;61:234–6.

    Article  CAS  PubMed  Google Scholar 

  44. Protopapas AD, Athanasiou T. Contegra conduit for reconstruction of the right ventricular outflow tract: a review of published early and mid-time results. J Cardiothorac Surg. 2008;3:62.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Iyer KS. The Contegra bovine jugular valved conduit: living up to expectations? Ann Pediatr Cardiol. 2012;5:34–5.

    PubMed Central  PubMed  Google Scholar 

  46. Dave H, Mueggler O, Comber M, Enodien B, Nikolaou G, Bauersfeld U, et al. Risk factor analysis of 170 single-institutional contegra implantations in pulmonary position. Ann Thorac Surg. 2011;91:195–203.

    Article  PubMed  Google Scholar 

  47. Breymann T, Blanz U, WOJTALIK M, Daenen W, Hetzer R, Sarris G, et al. European contegra multicentre study: 7-year results after 165 valved bovine jugular vein graft implantations. Thorac Cardiovasc Surg. 2009;57:257–69.

    Article  CAS  PubMed  Google Scholar 

  48. Prior N, Alphonso N, Arnold P, Peart I, Thorburn K, Venugopal P, et al. Bovine jugular vein valved conduit: up to 10 years follow-up. J Thorac Cardiovasc Surg. 2011;141:983–7.

    Article  PubMed  Google Scholar 

  49. Göber V, Berdat P, Pavlovic M, Pfammatter J-P, Carrel TP. Adverse mid-term outcome following RVOT reconstruction using the contegra valved bovine jugular vein. Ann Thorac Surg. 2005;79:625–31.

    Article  PubMed  Google Scholar 

  50. Meyns B, Van Garsse L, Boshoff D, Eyskens B, Mertens L, Gewillig M, et al. The Contegra conduit in the right ventricular outflow tract induces supravalvular stenosis. J Thorac Cardiovasc Surg. 2004;128:834–40.

    Article  PubMed  Google Scholar 

  51. Schoenhoff FS, Loup O, Gahl B, Banz Y, Pavlovic M, Pfammatter J-P, et al. The Contegra bovine jugular vein graft versus the Shelhigh pulmonic porcine graft for reconstruction of the right ventricular outflow tract: a comparative study. J Thorac Cardiovasc Surg. 2011;141:654–61.

    Article  PubMed  Google Scholar 

  52. Wojtalik M, Mrowczynski W, Eromski J, Bartkowski R. Does contegra xenograft implantation evoke cellular immunity in children? Interact CardioVasc Thorac Surg. 2003;2:273–8.

    Article  PubMed  Google Scholar 

  53. Tiete AR, Sachweh JS, Roemer U, Kozlik-Feldmann R, Reichart B, Daebritz SH. Right ventricular outflow tract reconstruction with the Contegra bovine jugular vein conduit: a word of caution. Ann Thorac Surg. 2004;77:2151–6.

    Article  PubMed  Google Scholar 

  54. Bautista-Hernandez V, Kaza AK, Benavidez OJ, Pigula FA. True aneurysmal dilatation of a contegra conduit after right ventricular outflow tract reconstruction: a novel mechanism of conduit failure. Ann Thorac Surg. 2008;86:1976–7.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Shebani S, Mcguirk S, Baghai M, Stickley J, Degiovanni J, Bulock F, et al. Right ventricular outflow tract reconstruction using Contegra® valved conduit: natural history and conduit performance under pressure. Eur J Cardiothorac Surg. 2006;29:397–405.

    Article  PubMed  Google Scholar 

  56. Boudjemline Y, Bonnet D, Massih TA, Agnoletti G, Iserin F, Jaubert F, et al. Use of bovine jugular vein to reconstruct the right ventricular outflow tract: early results. J Thorac Cardiovasc Surg. 2003;126:490–7.

    Article  PubMed  Google Scholar 

  57. Ishizaka T, Ohye RG, Goldberg CS, Ramsburg SR, Suzuki T, Devaney EJ, et al. Premature failure of small-sized Shelhigh no-react porcine pulmonic valve conduit model NR-4000. Eur J Cardiothorac Surg. 2003;23:715–8.

    Article  PubMed  Google Scholar 

  58. Manji RA. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation. 2006;114:318–27.

    Article  CAS  PubMed  Google Scholar 

  59. Human P, Zilla P. Characterization of the immune response to valve bioprostheses and its role in primary tissue failure. Ann Thorac Surg. 2001;71(5 Suppl):S385–8.

    Article  CAS  PubMed  Google Scholar 

  60. Manji RA, Menkis AH, Cooper DK. Porcine bioprosthetic heart valves: the next generation. Am Heart J. 2012;164:177–85.

    Article  PubMed  Google Scholar 

  61. Ilbawi MN, Lockhart CG, Idriss FS, DeLeon SY, Muster AJ, Duffy CE, et al. Experience with St. Jude Medical valve prosthesis in children. A word of caution regarding right-sided placement. J Thorac Cardiovasc Surg. 1987;93:73–9.

    CAS  PubMed  Google Scholar 

  62. Fleming WH, Sarafian LB, Moulton AL, Robinson LA, Kugler JD. Valve replacement in the right side of the heart in children: long-term follow-up. Ann Thorac Surg. 1989;48:404–8.

    Article  CAS  PubMed  Google Scholar 

  63. Waterbolk T, Hoendermis E, Denhamer I, Ebels T. Pulmonary valve replacement with a mechanical prosthesis. Promising results of 28 procedures in patients with congenital heart disease. Eur J Cardiothorac Surg. 2006;30:28–32.

    Article  PubMed  Google Scholar 

  64. Stulak JM, Dearani JA, Burkhart HM, Connolly HM, Warnes CA, Suri RM, et al. The increasing use of mechanical pulmonary valve replacement over a 40-year period. Ann Thorac Surg. 2010;90:2009–15.

    Article  PubMed  Google Scholar 

  65. Shin HJ, Kim Y-H, Ko J-K, Park I-S, Seo DM. Outcomes of mechanical valves in the pulmonic position in patients with congenital heart disease over a 20-year period. Ann Thorac Surg. 2013;95:1367–71.

    Article  PubMed  Google Scholar 

  66. Dos L, Muñoz-Guijosa C, Mendez AB, Ginel A, Montiel J, Padro JM, et al. Long term outcome of mechanical valve prosthesis in the pulmonary position. Int J Cardiol. 2011;150:173–6.

    Article  PubMed  Google Scholar 

  67. Lurz P, Gaudin R, Taylor AM, Bonhoeffer P. Percutaneous pulmonary valve implantation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2009;12:112–7.

    Article  Google Scholar 

  68. Kenny D, Hijazi ZM, Kar S, Rhodes J, Mullen M, Makkar R, et al. Percutaneous Implantation of theEdwards SAPIEN Transcatheter Heart Valvefor Conduit Failure in the Pulmonary Position. J Am Coll Cardiol. Elsevier Inc; 2011; 58: 2248–56.

  69. Guccione P, Milanesi O, Hijazi ZM, Pongiglione G. Transcatheter pulmonary valve implantation in native pulmonary outflow tract using the Edwards SAPIEN transcatheter heart valve. Eur J Cardiothorac Surg. 2012;41:1192–4.

    Article  PubMed  Google Scholar 

  70. Lurz P, Coats L, Khambadkone S, Nordmeyer J, Boudjemline Y, Schievano S, et al. Percutaneous pulmonary valve implantation: impact of evolving technology and learning curve on clinical outcome. Circulation. 2008;117:1964–72.

    Article  PubMed  Google Scholar 

  71. McElhinney DB, Hellenbrand WE, Zahn EM, Jones TK, Cheatham JP, Lock JE, et al. Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation. 2010;122:507–16.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Biermann D, Schönebeck J, Rebel M, Weil J, Dodge-Khatami A. Left coronary artery occlusion after percutaneous pulmonary valve implantation. Ann Thorac Surg. 2012;94(1):e7–9.

    Article  PubMed  Google Scholar 

  73. Turrentine MW, McCarthy RP, Vijay P, McConnell KW, Brown JW. PTFE monocusp valve reconstruction of the right ventricular outflow tract. Ann Thorac Surg. 2002;73:871–9.

    Article  PubMed  Google Scholar 

  74. Izutani H, Gundry SR, Vricella LA, Xu H, Bailey LL. Right ventricular outflow tract reconstruction using a Goretex membrane monocusp valve in infant animals. ASAIO J. 2000;46:553–5.

    Article  CAS  PubMed  Google Scholar 

  75. Miyazaki T, Yamagishi M, Nakashima A, Fukae K, Nakano T, Yaku H, et al. Expanded polytetrafluoroethylene valved conduit and patch with bulging sinuses in right ventricular outflow tract reconstruction. J Thorac Cardiovasc Surg. 2007;134:327–32.

    Article  PubMed  Google Scholar 

  76. Miyazaki T, Yamagishi M, Maeda Y, Yamamoto Y, Taniguchi S, Sasaki Y, et al. Expanded polytetrafluoroethylene conduits and patches with bulging sinuses and fan-shaped valves in right ventricular outflow tract reconstruction: multicenter study in Japan. J Thorac Cardiovasc Surg. 2011;142:1122–9.

    Article  CAS  PubMed  Google Scholar 

  77. Suzuki I, Shiraishi Y, Yabe S, Tsuboko Y, Sugai TK, Matsue K, et al. Engineering analysis of the effects of bulging sinuses in a newly designed pediatric pulmonary heart valve on hemodynamic function. J Artif Organs. 2012;15:49–56.

    Article  PubMed  Google Scholar 

  78. Yamamoto Y, Yamagishi M, Miyazaki T. Right ventricular outflow tract reconstruction–rationale for the advantage of expanded polytetrafluoroethylene conduit with bulging sinuses and fan-shaped valves–. Pediatr Cardiol and Cardiac Surg. 2012;28:295–305.

    Article  Google Scholar 

  79. Katayama S, Umetani N, Sugiura S, Hisada T. The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J Thorac Cardiovasc Surg. 2008;136:1528–35.

    Article  PubMed  Google Scholar 

  80. Stein PD, Sabbah HN. Measured turbulence and its effect on thrombus formation. Circ Res. 1974;35:608–14.

    Article  CAS  PubMed  Google Scholar 

  81. Sakamoto Y, Hashimoto K, Okuyama H, Ishii S, Shingo T, Kagawa H. Prevalence of pannus formation after aortic valve replacement: clinical aspects and surgical management. J Artif Organs. 2006;9:199–202.

    Article  PubMed  Google Scholar 

  82. Niwaya K, Knott-Craig CJ, Lane MM, Chandrasekaren K, Overholt ED, Elkins RC. Cryopreserved homograft valves in the pulmonary position: risk analysis for intermediate-term failure. J Thorac Cardiovasc Surg. 1999;117:141–6.

    Article  CAS  PubMed  Google Scholar 

  83. Gerestein CG, Takkenberg JJ, Oei FB, Cromme-Dijkhuis AH, Spitaels SE, van Herwerden LA, et al. Right ventricular outflow tract reconstruction with an allograft conduit. Ann Thorac Surg. 2001;71:911–7.

    Article  CAS  PubMed  Google Scholar 

  84. Perron J, Moran AM, Gauvreau K, del Nido PJ, Mayer JE, Jonas RA. Valved homograft conduit repair of the right heart in early infancy. Ann Thorac Surg. 1999;68:542–8.

    Article  CAS  PubMed  Google Scholar 

  85. Sekarski N, van Meir H, Rijlaarsdam MEB, Schoof PH, Koolbergen DR, Hruda J, et al. Right ventricular outflow tract reconstruction with the bovine jugular vein graft: 5 years’ experience with 133 patients. Ann Thorac Surg. 2007;84:599–605.

    Article  PubMed  Google Scholar 

  86. Lee C, Park CS, Lee CH, Kwak JG, Kim SJ, Shim WS, et al. Durability of bioprosthetic valves in the pulmonary position: long-term follow-up of 181 implants in patients with congenital heart disease. J Thorac Cardiovasc Surg. 2011;142:351–8.

    Article  PubMed  Google Scholar 

  87. Zubairi R, Malik S, Jaquiss RDB, Imamura M, Gossett J, Morrow WR. Risk factors for prosthesis failure in pulmonary valve replacement. Ann Thorac Surg. 2011;91:561–5.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Yamamoto.

Additional information

This article is a complete re-iteration of a review article that was originally published in Kyobu Geka 2014;67:65–77 (in Japanese).

This review was submitted at the invitation of the editorial committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, Y., Yamagishi, M. & Miyazaki, T. Current status of right ventricular outflow tract reconstruction: complete translation of a review article originally published in Kyobu Geka 2014;67:65–77. Gen Thorac Cardiovasc Surg 63, 131–141 (2015). https://doi.org/10.1007/s11748-014-0500-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-014-0500-0

Keywords

Navigation