Skip to main content
Log in

Micro-magnetic damage characterization of bent and cold forged parts

  • Quality Assurance
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Damage can have a strong impact on the fatigue performance of bulk formed parts for example produced by cold forging and sheet metal formed parts for example produced by bending. One suitable method to detect damage non-destructively in a time-efficient way is the micro-magnetic material characterization. In this paper, the suitability of harmonic analysis of the tangential magnetic field strength for the detection of damage in bent DP800-parts and cold forged 16MnCrS5-parts is discussed. For differently formed parts a correlation between the magnitude of damage and the behavior of the upper harmonics parameters is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Anderson D, Butcher C, Pathak N, Worswick MJ (2017) Failure parameter identification and validation for a dual-phase 780 steel sheet. Int J Solids Struct 124:89–107. https://doi.org/10.1016/j.ijsolstr.2017.06.018

    Article  Google Scholar 

  2. Baak N, Schaldach F, Nickel J, Biermann D, Walther F (2018) Barkhausen noise assessment of the surface conditions due to deep hole drilling and their influence on the fatigue behaviour of AISI 4140. Metals (Basel) 8:720. https://doi.org/10.3390/met8090720

    Article  Google Scholar 

  3. Borsutzki M, Thiessen R, Altpeter I, Dobmann G, Tschuncky R, Szielasko K (2010) Nondestructive characterisation of damage evolution in advanced high strength steels. In: 18th European conference on fracture: fracture of materials and structures from micro to macro scale

  4. Bridgman PW (1945) Effects of high hydrostatic pressure on the plastic properties of metals. Rev Mod Phys 17:2–4

    Article  Google Scholar 

  5. Cupka V, Nakagava T, Tiyamoto H (1973) Fine bending with counter pressure. Ann CIRP 22:73–74

    Google Scholar 

  6. Hering O, Dunlap A, Schwedt A, Tekkaya AE (2019) Characterization of damage in forward rod extruded parts. Eingereicht bei Int J Mater Form

  7. Hering O, Tekkaya AE (2019) Damage-induced performance variations of cold forged parts. Eingereicht bei J Mater Process Technol

  8. Hoefnagels JPM, Tasan CC, Pradelle M, Geers MGD (2008) Brittle fracture-based experimental methodology for microstructure analysis. Appl Mech Mater 13–14:133–139. https://doi.org/10.4028/www.scientific.net/AMM.13-14.133

    Article  Google Scholar 

  9. Hübschen G, Altpeter I, Tschuncky R, Herrmann H-G (2016) Materials characterization using nondestructive evaluation (NDE) methods. Elsevier, Amsterdam. https://doi.org/10.1016/C2014-0-00661-2

    Book  Google Scholar 

  10. Kempf RA, Sacanell J, Milano J, Guerra Méndez N, Winkler E, Butera A, Troiani H, Saleta ME, Fortis AM (2014) Correlation between radiation damage and magnetic properties in reactor vessel steels. J Nucl Mater 445:57–62. https://doi.org/10.1016/j.jnucmat.2013.10.006

    Article  Google Scholar 

  11. Lemaitre J (1985) A continuous damage mechanics model for ductils fracture. Trans ASME J Eng Mater Technol. https://doi.org/10.1115/1.3225775

    Article  Google Scholar 

  12. Ludwik P (1926) Bestimmung der Reißfestigkeit aus der gleichmäßigen Dehnung. Zeitschrift für Met. 18:269–272

    Google Scholar 

  13. Matzenmiller A, Bröcker C, Gerlach S (2009) FE-Analysis of simultaneous hot/cold forging. Steel Res Int 80:130–136. https://doi.org/10.2374/SRI08SP011

    Article  Google Scholar 

  14. Melikhov Y, Lo CCH, Jiles DC (2004) Magnetic nondestructive investigation of ferromagnetic alloys subjected to stress and fatigue. In: AIP conference proceedings. AIP, pp 1312–1319. https://doi.org/10.1063/1.1711768

  15. Meya R, Kusche C, Löbbe C, Al-Samman T, Korte-Kerzel S, Tekkaya A (2019) Global and high-resolution damage quantification in dual-phase steel bending samples with varying stress states. Metals (Basel) 9:319. https://doi.org/10.3390/met9030319

    Article  Google Scholar 

  16. Meya R, Löbbe C, Tekkaya AE (2019) Stress state analysis of radial stress superposed bending. Int J Precis Eng Manuf 20:53–66. https://doi.org/10.1007/s12541-019-00040-0

    Article  Google Scholar 

  17. Meya R, Löbbe C, Tekkaya AE (2019) Stress state control by a novel bending process and its effect on damage evolution and product performance. Int J Manuf Sci, Eng, p 141

    Google Scholar 

  18. Meya R, Löbbe C, Tekkaya AE (2018) Stress state control by a novel bending process and its effect on damage evolution. In: Proceedings of the 2018 manufacturing science and engineering conference MSEC, College Station, Texas

  19. Mohr D (2015) Basic notions of fracture mechanics—Ductile fracture [WWW document]. ETH Zürich, Dep. Mech. Process Eng., Zürich

    Google Scholar 

  20. Palma ES, Mansur TR, Silva SF, Alvarenga A (2005) Fatigue damage assessment in AISI 8620 steel using Barkhausen noise. Int J Fatigue 27:659–665. https://doi.org/10.1016/j.ijfatigue.2004.11.005

    Article  Google Scholar 

  21. Park D-G, Jeong H-T, Hong J-H (1999) A study on the radiation damage and recovery of neutron irradiated vessel steel using magnetic Barkhausen noise. J Appl Phys 85:5726–5728. https://doi.org/10.1063/1.370265

    Article  Google Scholar 

  22. Remmers WE (1930) Causes of cuppy wire. Trans Metall Soc AIME 89:107–120

    Google Scholar 

  23. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217. https://doi.org/10.1016/0022-5096(69)90033-7

    Article  Google Scholar 

  24. Rogers HC (1960) The tensile fracture of ductile metals. Trans Metall Soc AIME 218:498–506

    Google Scholar 

  25. Sagar S, Parida N, Das S, Dobmann G, Bhattacharya D (2005) Magnetic Barkhausen emission to evaluate fatigue damage in a low carbon structural steel. Int J Fatigue 27:317–322. https://doi.org/10.1016/j.ijfatigue.2004.06.015

    Article  Google Scholar 

  26. Samfaß L, Walther F (2018) Einfluss umformtechnisch induzierter Schädigung auf das Ermüdungsverhalten und die magnetischen Werkstoffeigenschaften des Stahls 16MnCrS5, Werkstoffprüfung 2018—Werkstoffe und Bauteile auf dem Prüfstand. G. Moninger, Stahleisen

    Google Scholar 

  27. Schiefenbusch J (1983) Untersuchungen zur Verbesserung des Umformverhaltens von Blechen beim Biegen. Dr.-Ing. Dissertation, TU Dortmund

  28. Szielasko K, Youssef S, Wolter B, Schuppmann M, Rodner C, Weingard C, Kopp H, Elzatma M, Mironenko I, Kiselmann I (2014) High-speed-3MA zur mikromagnetischen Werkstofffcharakterisierung in schnellen Produktionsprozessen. In: DGZfP-Jahrestagung, Mo.3.A.4, Berlin

  29. Tekkaya AE, Allwood JM, Bariani PF, Bruschi S, Cao J, Gramlich S, Groche P, Hirt G, Ishikawa T, Löbbe C, Lueg-Althoff J, Merklein M, Misiolek WZ, Pietrzyk M, Shivpuri R, Yanagimoto J (2015) Metal forming beyond shaping: predicting and setting product properties. CIRP Ann Manuf Technol 64:629–653. https://doi.org/10.1016/j.cirp.2015.05.001

    Article  Google Scholar 

  30. Tekkaya AE, Ben Khalifa N, Hering O, Meya R, Myslicki S, Walther F (2017) Forming-induced damage and its effects on product properties. CIRP Ann Manuf Technol 66:281–284. https://doi.org/10.1016/j.cirp.2017.04.113

    Article  Google Scholar 

  31. Tränkler H-R, Reindl LM (2014) Sensortechnik, VDI-Buch. Springer, Berlin. https://doi.org/10.1007/978-3-642-29942-1

    Book  Google Scholar 

  32. Tschunky R (2011) Sensor- und geräteunabhängige Kalibrierung elektromagnetischer zerstörungsfreier Prüfverfahren zur praxisorientierten Werkstoffcharakterisierung

  33. Vashista M, Moorthy V (2013) Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic Barkhausen noise profile. J Magn Magn Mater 345:208–214. https://doi.org/10.1016/j.jmmm.2013.06.038

    Article  Google Scholar 

  34. Wierzbicki T, Bao Y, Lee Y-W, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47:719–743. https://doi.org/10.1016/j.ijmecsci.2005.03.003

    Article  Google Scholar 

  35. Zhong Z, Hung NP (2002) Grinding of alumina/aluminum composites. J Mater Process Technol 123:13–17. https://doi.org/10.1016/S0924-0136(02)00075-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding by the German Research Foundation (DFG) for the subprojects A02, A05 and B01 within the Collaborative Research Center CRC/Transregio 188 “Damage Controlled Forming Processes” (Project number: 278868966).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas Baak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samfaß, L., Baak, N., Meya, R. et al. Micro-magnetic damage characterization of bent and cold forged parts. Prod. Eng. Res. Devel. 14, 77–85 (2020). https://doi.org/10.1007/s11740-019-00934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-019-00934-y

Keywords

Navigation