Skip to main content
Log in

Methodology for integrative production planning in highly dynamic environments

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Flexibility has become one of the most important characteristics in modern manufacturing. As a result, process chains must be highly adaptable to varying demands and to new products. Furthermore, many process chains contain external processes from suppliers to handle the fluctuating process utilisation. Moreover, novel manufacturing processes that allow an even higher flexibility, such as additive manufacturing, have been introduced. In order to identify optimal parameters for flexible process chains and considering interactions between processes, a new approach for production planning is necessary. This article presents a methodology for integrative production planning in highly dynamic environments thereof. The introduced methodology is applied on two industrial use cases with the aim of identifying optimal process elements and parameters taking production costs and time under consideration. The results show that the developed methodology allows for successful modelling and optimisation of the process chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wiendahl HP, ElMaraghy HA, Zaeh MF, Wiendahl HH, Duffie N, Kolakowski M (2007) Changeable manufacturing—classification, design, operation. Ann CIRP 56:783–809. https://doi.org/10.1016/j.cirp.2007.10.003

    Article  Google Scholar 

  2. Abele E, Elzenheimer J, Liebeck T, Meyer T (2006) Globalization and decentralization of manufacturing. In: Dashchenko AI (ed) Reconfigurable manufacturing systems. Springer, Berlin, pp 3–13

    Chapter  Google Scholar 

  3. Nyhuis P, Wulf S, Klemke T, Benjamin B (2010) Integrative factory, technology, and product planning-systemizing the information transfer on the operational level. Prod Eng Res Dev 4:231–237. https://doi.org/10.1007/s11740-010-0225-6

    Article  Google Scholar 

  4. Mehrabi MG, Ulsoy AG, Koren Y, Heytler P (2002) Trends and perspectives in flexible and reconfigurable manufacturing systems. J Intell Manuf 13:135–146. https://doi.org/10.1023/A:1014536330551

    Article  Google Scholar 

  5. Denkena B, Mörke T (2017) Cyber-physical and gentelligent systems in manufacturing and life cycle. Academic Press, Cambridge

    Google Scholar 

  6. Hees A, Reinhart G (2015) Approach for production planning in reconfigurable manufacturing systems. Conf Intell Comput Manuf Eng 33:70–75. https://doi.org/10.1016/j.procir.2015.06.014

    Google Scholar 

  7. Denkena B, Lorenzen LE, Schmidt J (2012) Adaptive process planning. Prod Eng Res Dev 6:55–67. https://doi.org/10.1007/s11740-011-0353-7

    Article  Google Scholar 

  8. Ponche R, Kerbrat O, Mognol P, Hascoet JY (2014) A novel methodology of design for Additive Manufacturing applied to Additive Laser Manufacturing process. Robot Comput Integr Manuf 30:389–398. https://doi.org/10.1016/j.rcim.2013.12.001

    Article  Google Scholar 

  9. Schmidt M, Merklein M, Bourell D, Dimitrov D, Hausotte T, Wegener K, Overmeyer L, Vollertsen F, Levy GN (2017) Laser based additive manufacturing in industry and academia. Ann CIRP 66:561–583. https://doi.org/10.1016/j.cirp.2017.05.011

    Article  Google Scholar 

  10. Newman ST, Zhu Z, Dhokia V, Shokrani A (2015) Process planning for additive and subtractive manufacturing technologies. Ann CIRP 64:467–470. https://doi.org/10.1016/j.cirp.2015.04.109

    Article  Google Scholar 

  11. Brandes A, Apitz R, Zwick M (2002) From single steps to a comprehensive process chain. Ann DAAAM 13:63–64

    Google Scholar 

  12. Eversheim W (2002) Organisation in der Produktionstechnik 3: Arbeitsvorbereitung. Springer, Berlin

    Book  Google Scholar 

  13. Henning H (2012) Modellbasierte Prozess-Adaption in der Feinplanung fertigungstechnischer Prozessketten. Dissertation, Universität Hannover

  14. Eichgrün K (2003) Prozesssicherheit in fertigungstechnischen Prozessketten - Systemanalyse, ganzheitliche Gestaltung und Führung. Dissertation, Universität Kaiserslautern

  15. Schäfer L (2003) Analyse und Gestaltung fertigungstechnischer Prozessketten - Konzept zur datenbasierten Ermittlung qualitätswirksamer Einfluss-Ursache-Wirkzusammenhänge und zur Ableitung von Maßnahmen zur Prozesssicherung. Dissertation, Universität Kaiserslautern

  16. Mukerjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Comput Ind Eng 50:15–34. https://doi.org/10.1016/j.cie.2005.10.001

    Article  Google Scholar 

  17. Denkena B, Henjes J, Henning H (2011) Simulation-based dimensioning of manufacturing process chains. J Manuf Sci Technol 4:9–14. https://doi.org/10.1016/j.cirpj.2011.06.015

    Article  Google Scholar 

  18. Hoang XL et al (2017) Modeling of interdependencies between products, processes and resources to support the evolution of mechatronic systems. IFAC PapersOnLine 50:4348–4353. https://doi.org/10.1016/j.ifacol.2017.08.873

    Article  Google Scholar 

  19. Tönshoff HK, Denkena B, Friemuth T, Zwick M, Brandes A (2002) Technological interfaces of industrial process chains. Prod Eng Res Dev 9:43–46

    Google Scholar 

  20. Hees A, Bayerl C, Van Vuuren B, Schutte CSL, Braunreuther S, Reinhart G (2017) A production planning method to optimally exploit the potential of reconfigurable manufacturing systems. Conf Intell Comput Manuf Eng 62:181–186. https://doi.org/10.1016/j.procir.2016.06.001

    Google Scholar 

  21. Denkena B, Henjes J, Lorenzen LE (2011) Adaptive process chain optimisation of manufacturing systems. In: ElMaraghy H (ed) Enabling manufacturing competitiveness and economic sustainability: International conference on changeable, agile, reconfigurable and virtual production, vol 4. Springer, Berlin, Heidelberg, pp 184–188. https://doi.org/10.1007/978-3-642-23860-4_30

    Google Scholar 

Download references

Acknowledgements

The authors thank the German Research Foundation (DFG) for its financial and organizational support of the project “Ganzheitliche Auslegung und Optimierung von Fertigungsprozessketten unter Berücksichtigung unternehmensexterner Herstellungsprozesse” (DE 447/134-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jacob.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denkena, B., Dittrich, MA. & Jacob, S. Methodology for integrative production planning in highly dynamic environments. Prod. Eng. Res. Devel. 13, 317–324 (2019). https://doi.org/10.1007/s11740-019-00889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-019-00889-0

Keywords

Navigation