Skip to main content
Log in

Synergistic effect of Paclobutrazol and silver nanoparticles (AgNPs) control the pod shattering in canola (Brassica napus L.) via physiological interferences: a mechanistic overview

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The ever-increasing impact of global climate change has profoundly affected crop growth, physiology, and yield characteristics, making them an economic hazard. Canola, a vital crop, is particularly susceptible to environmental challenges at any stage of development, which can have a negative impact on its growth, physiology, and pod formation, ultimately resulting in pod shattering and reduced yield. Canola's rate of return is decreased by mechanical harvesting, which results in pod shattering. The establishment of an abscission layer, triggered by enzymatic and hormonal disruptions, and accompanied by a decline in cell wall stickiness, exacerbates pod shattering. In this context, the potential roles of Paclobutrazol and silver nanoparticles in reinforcing pod strength to withstand shattering. The specific doses of both AgNPs and Paclobutrazol could be done on the aerial parts of plant. These elements facilitate the physiological growth of crops by mitigating the adverse effects of stress on canola, thereby reducing pod shattering and enhancing yield output. This critical review aims to comprehensively explore the physiological, enzymatic, and hormonal-based factors contributing to pod shattering under environmental stresses, while also highlighting the potential mitigation techniques employing Paclobutrazol and silver nanoparticles, to elevate canola yield production. Based on this comprehensive review, it is recommended to organize research experiment to explore the potential of AgNPs and Paclobutrazol in mitigating the pod shattering based yield losses in canola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All the data in this paper is composed by reading and observing the old literatures.

References

  • Abd-Hamid N-A, Ahmad-Fauzi M-I, Zainal Z, Ismail I (2020) Diverse and dynamic roles of F-box proteins in plant biology. Planta 251:1–31

    Article  Google Scholar 

  • Aguilar-Benitez D, Casimiro-Soriguer I, Torres AM (2020) First approach to pod dehiscence in faba bean: genetic and histological analyses. Sci Rep 10:1–14

    Article  Google Scholar 

  • Ahmad S, Abbas G, Fatima Z et al (2017) Quantification of the impacts of climate warming and crop management on canola phenology in Punjab, Pakistan. J Agron Crop Sci 203:442–452

    Article  Google Scholar 

  • Ahmad Z, Barutçular C, Zia Ur Rehman M et al (2022) Pod shattering in canola reduced by mitigating drought stress through silicon application and molecular approaches—A review. J Plant Nutr 46:101–128

    Article  Google Scholar 

  • Akhtar I, Iqbal Z, Saddiqe Z (2020) Nanotechnology in pest management. Nanoagronomy, pp 69–83

  • Al Ramadan R, Karas M, Ranušová P, Moravčíková J (2021) Effect of silver nitrate on in vitro regeneration and antioxidant responses of oilseed rape cultivars (Brassica napus L.). J Microbiol Biotechnol Food Sci 10:e4494–e4494

    CAS  Google Scholar 

  • Anwar S, Kuai J, Khan S et al (2017) Soaking seeds with Paclobutrazol enhances winter survival and yield of rapeseed in a rice-rapeseed relay cropping system. Int J Plant Prod 11:491–504

    Google Scholar 

  • Ashfaq M, Khan S (2017) Role of phytohormones in improving the yield of oilseed crops: crop Yield Adapt under Environ Stress, pp 165–183

  • Ashraf N, Ashraf M (2020) Response of growth inhibitor Paclobutrazol in fruit crops. In: Prunus. IntechOpen

  • Ballester P, Ferrándiz C (2017) Shattering fruits: variations on a dehiscent theme. Curr Opin Plant Biol 35:68–75

    Article  PubMed  Google Scholar 

  • Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115:1053–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baylis AD, Wright ITJ (1990) The effects of lodging and a Paclobutrazol—chlormequat chloride mixture on the yield and quality of oilseed rape. Ann Appl Biol 116:287–295

    Article  Google Scholar 

  • Borger CPD, Hashem A, Gill GS (2020) Comparison of growth, survivorship, seed production and shedding of eight weed species in a wheat crop in Western Australia. Weed Res 60:415–424

    Article  Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD et al (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    Article  PubMed  PubMed Central  Google Scholar 

  • Cecchetti V, Altamura MM, Brunetti P et al (2013) Auxin controls Arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. Plant J 74:411–422

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Roychoudhury A (2020) Penconazole, Paclobutrazol, and triacontanol in overcoming environmental stress in plants. Prot Chem Agents Amelior Plant Abiotic Stress Biochem Mol Perspect, pp 510–534

  • Chauvaux N, Child R, John K et al (1997) The role of auxin in cell separation in the dehiscence zone of oilseed rape pods. J Exp Bot 48:1423–1429

    Article  CAS  Google Scholar 

  • Clark R, Dahlhaus P, Robinson N et al (2023) Matching the model to the available data to predict wheat, barley, or canola yield: a review of recently published models and data. Agric Syst 211:103749

    Article  Google Scholar 

  • Crivellaro A, Büntgen U (2020) New evidence of thermally constrained plant cell wall lignification. Trends Plant Sci 25:322–324

    Article  CAS  PubMed  Google Scholar 

  • Cubins JA, Wells MS, Frels K et al (2019) Management of pennycress as a winter annual cash cover crop. A Review. Agron Sustain Dev 39:1–11

    Article  Google Scholar 

  • Cubins JA, Wells SS, Walia MK et al (2022) Harvest attributes and seed quality predict physiological maturity of pennycress. Ind Crops Prod 176:114355

    Article  CAS  Google Scholar 

  • Desta B, Amare G (2021) Paclobutrazol as a plant growth regulator. Chem Biol Technol Agric 8:1–15

    Article  CAS  Google Scholar 

  • do Espirito Santo Pereira A, Caixeta Oliveira H, Fernandes Fraceto L, Santaella C (2021) Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Wang Y-Z (2015) Seed shattering: from models to crops. Front Plant Sci 6:476

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao J, Zhang Y, Li Z, Liu M (2020) Role of ethylene response factors (ERFs) in fruit ripening. Food Qual Saf 4:15–20

    Article  Google Scholar 

  • Ghouri MZ, Khan Z, Khan SH et al (2020) Nanotechnology: Transformation of agriculture and food security. Bioscience 3:19

    Google Scholar 

  • Goldental-Cohen S, Burstein C, Biton I et al (2017) Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound. BMC Plant Biol 17:1–17

    Article  Google Scholar 

  • Guo Y, Qiu C, Long S et al (2015) Effects of Paclobutrazol on agronomic characters and lodging resistance of flax (Linum usitatissimum). J South Agric 46:1780–1785

    Google Scholar 

  • Gupta N, Upadhyaya CP, Singh A, et al (2018) Applications of silver nanoparticles in plant protection. Nanobiotechnology Appl plant Prot, pp 247–265

  • Habibzadeh F, Sorooshzadeh A, Pirdashti H, Sanavy S (2012) Effect of nitrogen compounds and tricyclazole on some biochemical and morphological characteristics of waterlogged-canola. Int Res J Appl Basic Sci 3:77–84

    CAS  Google Scholar 

  • He X, Deng H, Hwang H (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21

    Article  PubMed  Google Scholar 

  • Hua S, Zhang Y, Yu H et al (2014) Paclobutrazol application effects on plant height seed yield and carbohydrate metabolism in canola. Int J Agric Biol 16:471–479

    CAS  Google Scholar 

  • Jackson MB, Osborne DJ (1970) Ethylene, the natural regulator of leaf abscission. Nature London 225:1019–1022

    Article  CAS  PubMed  Google Scholar 

  • Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S (2019) Effects of foliar application of cobalt oxide nanoparticles on growth, photosynthetic pigments, oxidative indicators, non-enzymatic antioxidants and compatible osmolytes in canola (Brassica napus L.). Acta Biol Cracoviensia Ser Bot 61:29–42

    CAS  Google Scholar 

  • Jaskulski D, Jaskulska I, Majewska J et al (2022) Silver nanoparticles (AgNPs) in urea solution in laboratory tests and field experiments with crops and vegetables. Materials (basel) 15:870

    Article  CAS  PubMed  Google Scholar 

  • Jermendi É, Beukema M, van den Berg MA et al (2022) Revealing methyl-esterification patterns of pectins by enzymatic fingerprinting: Beyond the degree of blockiness. Carbohydr Polym 277:118813

    Article  CAS  PubMed  Google Scholar 

  • JieLI X, Yang Y, ZHOU G K (2017) Effects of Paclobutrazol on biomass production in relation to resistance to lodging and pod shattering in Brassica napus L. J Integr Agric 16:2470–2481

    Article  Google Scholar 

  • Kanjana D (2017) Advancement of nanotechnology applications on plant nutrients management and soil improvement. Nanotechnol Food Environ Paradig, pp 209–234

  • Kaur J, Akhatar J, Goyal A et al (2020) Genome wide association mapping and candidate gene analysis for pod shatter resistance in Brassica juncea and its progenitor species. Mol Biol Rep 47:2963–2974

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Rizvi TF (2017) Application of nanofertilizer and nanopesticides for improvements in crop production and protection. Nanosci plant–soil Syst, pp 405–427

  • Koutroubas SD, Damalas CA (2015) Sunflower response to repeated foliar applications of Paclobutrazol. Planta Daninha 33:129–135

    Article  Google Scholar 

  • Kuai J, Yang Y, Sun Y et al (2015) Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. F Crop Res 180:10–20

    Article  Google Scholar 

  • Kuai J, Sun Y, Liu T et al (2016) Physiological mechanisms behind differences in pod shattering resistance in rapeseed (Brassica napus L.) varieties. PLoS ONE 11:e0157341

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y-L, Yu Y-K, Zhu K-M et al (2021) Down-regulation of MANNANASE7 gene in Brassica napus L. enhances silique dehiscence-resistance. Plant Cell Rep 40:361–374

    Article  PubMed  Google Scholar 

  • Liu C, Gan Y, Poppy L (2014) Evaluation of on-farm crop management decisions on canola productivity. Can J Plant Sci 94:131–139

    Article  Google Scholar 

  • Liu D, Li J, Li Z, Pei Y (2020) Hydrogen sulfide inhibits ethylene-induced petiole abscission in tomato (Solanum lycopersicum L.). Hortic Res 7:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Lolaei A, Mobasheri S, Bemana R, Teymori N (2013) Role of Paclobutrazol on vegetative and sexual growth of plants. Int J Agric Crop Sci 5:958

    Google Scholar 

  • Mactal AG, Canare JG Jr (2015) Lodging resistance and agro-morphological characteristics of Elon-Elon and Palawan red sprayed with Paclobutrazol. J Agric Technol 11:1649–1667

    CAS  Google Scholar 

  • Mahendran D, Geetha N, Venkatachalam P (2019) Role of silver nitrate and silver nanoparticles on tissue culture medium and enhanced the plant growth and development. Vitr Plant Breed Towar Nov Agron Trait Biot Abiotic Stress Toler. https://doi.org/10.1016/j.heliyon.2023.e16928

    Article  Google Scholar 

  • Maity A, Lamichaney A, Joshi DC et al (2021) Seed shattering: a trait of evolutionary importance in plants. Front Plant Sci 12:657773

    Article  PubMed  PubMed Central  Google Scholar 

  • Marciniak K, Przedniczek K (2021) Anther dehiscence is regulated by gibberellic acid in yellow lupine (Lupinus luteus L.). BMC Plant Biol 21:1–23

    Article  Google Scholar 

  • Mehmood MZ, Qadir G, Afzal O et al (2021) Paclobutrazol improves sesame yield by increasing dry matter accumulation and reducing seed shattering under rainfed conditions. Int J Plant Prod 15:1–13

    Article  Google Scholar 

  • Meza A, Rojas P, Cely-Veloza W et al (2020) Variation of isoflavone content and DPPH• scavenging capacity of phytohormone-treated seedlings after in vitro germination of cape broom (Genista monspessulana). South African J Bot 130:64–74

    Article  CAS  Google Scholar 

  • Mitter N, Hussey K (2019) Moving policy and regulation forward for nanotechnology applications in agriculture. Nat Nanotechnol 14:508–510

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi MHS, Etemadi N, Arab MM et al (2017) Molecular and physiological responses of Iranian Perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress. Plant Physiol Biochem 111:129–143

    Article  Google Scholar 

  • Mohan R, Vyas D, Bhat HA et al (2015) Exploring possibilities of induction of water stress tolerance in mulberry in rainfed condition by application of Paclobutrazol. J Glob Biosci Washim 4:3301–3310

    Google Scholar 

  • Mustapha T, Misni N, Ithnin NR et al (2022) A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. Int J Environ Res Public Health 19:674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neme K, Nafady A, Uddin S, Tola YB (2021) Application of nanotechnology in agriculture, postharvest loss reduction and food processing: Food security implication and challenges. Heliyon 7:e08539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura H, Kamiya A, Nagata T et al (2018) Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep 8:1–11

    Article  CAS  Google Scholar 

  • Ogutcen E, Pandey A, Khan MK et al (2018) Pod shattering: a homologous series of variation underlying domestication and an avenue for crop improvement. Agronomy 8:137

    Article  CAS  Google Scholar 

  • Olsson V, Butenko MA (2018) Abscission in plants. Curr Biol 28:R338–R339

    Article  CAS  PubMed  Google Scholar 

  • Ounkaew A, Kasemsiri P, Srichiangsa N et al (2021) Green synthesis of nanosilver coating on paper for ripening delay of fruits under visible light. J Environ Chem Eng 9:105094

    Article  CAS  Google Scholar 

  • Paiva EAS (2016) How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Ann Bot 117:533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker TA, Lo S, Gepts P (2021) Pod shattering in grain legumes: emerging genetic and environment-related patterns. Plant Cell 33:179–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Partila AM (2019) Bioproduction of silver nanoparticles and its potential applications in agriculture. Nanotechnol Agric Adv Sustain Agric, pp 19–36

  • Patharkar OR, Walker JC (2018) Advances in abscission signaling. J Exp Bot 69:733–740

    Article  CAS  PubMed  Google Scholar 

  • Patharkar OR, Walker JC (2019) Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence. Plant Sci 284:25–29

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Chen X, Yin Y et al (2014a) Lodging resistance of winter wheat (Triticum aestivum L): Lignin accumulation and its related enzymes activities due to the application of Paclobutrazol or gibberellin acid. F Crop Res 157:1–7

    Article  Google Scholar 

  • Peng G, Lahlali R, Hwang SF, et al (2014b) Special Issue Crop rotation cultivar resistance and fungicides/biofungicides for managing clubroot (Plasmodiophora brassicae) on canola. Can J Plant Pathol 36: 99–112

  • Perkins M, Smith RA, Samuels L (2019) The transport of monomers during lignification in plants: anything goes but how? Curr Opin Biotechnol 56:69–74

    Article  CAS  PubMed  Google Scholar 

  • Pieczywek PM, Płaziński W, Zdunek A (2020) Dissipative particle dynamics model of homogalacturonan based on molecular dynamics simulations. Sci Rep 10:1–14

    Article  Google Scholar 

  • Reddy GVP (2017) Integrated management of insect pests on canola and other Brassica oilseed crops. CABI. https://doi.org/10.1653/024.100.0428

    Article  Google Scholar 

  • Sajedi NA, Farahani H, Nikoogoftar MA (2023) The effect of foliar—applied silicon compounds on reducing seed shattering and improve seed and oil yield of canola (Brassica napus L.). SILICON 15:197–204

    Article  CAS  Google Scholar 

  • Salachna P, Byczyńska A, Zawadzińska A et al (2019) Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy 9:610

    Article  CAS  Google Scholar 

  • Sami F, Siddiqui H, Hayat S (2020) Impact of silver nanoparticles on plant physiology: a critical review. Sustain Agric Rev 41:111–127

    Article  Google Scholar 

  • Sanzari I, Leone A, Ambrosone A (2019) Nanotechnology in plant science: to make a long story short. Front Bioeng Biotechnol 7:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarwar M, Saleem MF, Ullah N et al (2023) Silver nanoparticles protect tillering in drought-stressed wheat by improving leaf water relations and physiological functioning. Funct Plant Biol 50:901–914

    Article  CAS  PubMed  Google Scholar 

  • Schmitz A, Moss CB (2015) Mechanized agriculture: machine adoption, farm size, and labor displacement. AgBioforum 18:278–296

    Google Scholar 

  • Schwartz-Lazaro LM, Shergill LS, Evans JA et al (2022) Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 3: Drivers of seed shatter. Weed Sci 70:79–86

    Article  Google Scholar 

  • Secchi MA, Fernandez JA, Stamm MJ et al (2023) Effects of heat and drought on canola (Brassica napus L.) yield, oil, and protein: a meta-analysis. F Crop Res 293:108848

    Article  Google Scholar 

  • Setia RC, Bhathal G, Setia N (1995) Influence of Paclobutrazol on growth and yield of Brassica carinata A. Br Plant Growth Regul 16:121–127

    Article  CAS  Google Scholar 

  • Sexton R, Roberts JA (1982) Cell biology of abscission. Annu Rev Plant Physiol 33:133–162

    Article  CAS  Google Scholar 

  • Shaoqing Z, Xiaorong M, Cheng Z, Guangwen Z (1999) Study on the formation of silique dehiscence susceptability in oilseed rape. J Zhejiang Univ Agric Life Sci 25:462–466

    Google Scholar 

  • Silva LP, Pereira TM, Bonatto CC (2019) Frontiers and perspectives in the green synthesis of silver nanoparticles. Green synthesis, characterization and applications of nanoparticles. Elsevier, Amsterdam, pp 137–164

    Chapter  Google Scholar 

  • Sofy MR, Elhindi KM, Farouk S, Alotaibi MA (2020) Zinc and Paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants 9:1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soumya PR, Kumar P, Pal M (2017) Paclobutrazol: a novel plant growth regulator and multi-stress ameliorant. Indian J Plant Physiol 22:267–278

    Article  CAS  Google Scholar 

  • Sriskantharajah K, El Kayal W, Torkamaneh D et al (2021) Transcriptomics of improved fruit retention by hexanal in ‘Honeycrisp’reveals hormonal crosstalk and reduced cell wall degradation in the fruit abscission zone. Int J Mol Sci 22:8830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szablińska-Piernik J, Lahuta LB, Stałanowska K, Horbowicz M (2022) The imbibition of pea (Pisum sativum L.) seeds in silver nitrate reduces seed germination, seedlings development and their metabolic profile. Plants 11:1877

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomaszewska-Sowa M, Lisiecki K, Pańka D (2022) Response of rapeseed (Brassica napus L.) to silver and gold nanoparticles as a function of concentration and length of exposure. Agronomy 12:2885

    Article  CAS  Google Scholar 

  • Tomaszewska-Sowa M, Siwik-Ziomek A, Figas A, Bocian K (2018) Assessment of metal nanoparticle-induced morphological and physiological changes in in vitro cultures of rapeseed (Brassica napus L). Electron J Polish Agric Univ. https://doi.org/10.30825/5.EJPAU.166.2018.21.4

  • Tripathi DK, Tripathi A, Shweta S et al (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7

    Article  Google Scholar 

  • Tripathi DK, Kandhol N, Rai P et al (2022) Ethylene renders silver nanoparticles stress tolerance in rice seedlings by regulating endogenous nitric oxide accumulation. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcac159

    Article  PubMed  Google Scholar 

  • Tung HT, Thuong TT, Cuong DM et al (2021) Silver nanoparticles improved explant disinfection, in vitro growth, runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria× ananassa). Plant Cell, Tissue Organ Cult 145:393–403

    Article  CAS  Google Scholar 

  • Usman M, Farooq M, Wakeel A et al (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Cheng T, Hu L (2015) Effect of wide–narrow row arrangement and plant density on yield and radiation use efficiency of mechanized direct-seeded canola in Central China. F Crop Res 172:42–52

    Article  Google Scholar 

  • Yang Y, Kuai J, Wu L et al (2015) Effects of Paclobutrazol on yield and mechanical harvest characteristics of winter rapeseed with direct seeding treatment. Acta Agron Sin 41:938–945

    Article  Google Scholar 

  • Yang S, Zhang X, Zhang X et al (2016) Expression of two endo-1, 4-β-glucanase genes during fruit ripening and softening of two pear varieties. Food Sci Technol Res 22:91–99

    Article  CAS  Google Scholar 

  • Yasin M, Shahzadi R, Riaz M et al (2019) Expression pattern analysis of core regulatory module SHPs-FUL transcripts in rapeseed pod shattering. Sarhad J Agric 35:696–707

    Google Scholar 

  • Yu Y-K, Li Y-L, Ding L-N et al (2020a) Mechanism and regulation of Silique Dehiscence, which affects oil seed production. Front Plant Sci 11:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Leyva P, Tavares RL, Kellogg EA (2020b) The anatomy of abscission zones is diverse among grass species. Am J Bot 107:549–561

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Tu B, Liu C, Liu X (2018) Pod anatomy, morphology and dehiscing forces in pod dehiscence of soybean (Glycine max (L.) Merrill). Flora 248:48–53

    Article  Google Scholar 

  • Zhu K, Gu S, Liu J et al (2021) Wood vinegar as a complex growth regulator promotes the growth, yield, and quality of rapeseed. Agronomy 11:510

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Generous support by Department of Agronomy PMAS arid Agriculture University Rawalpindi Pakistan is highly acknowledged in the completion of this study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this review article have significantly contributed to writing review paper and critically revised the review article. All authors contributed to the writing or revision of the final manuscript. H.A: conceptualization/conceived the study idea, planned and designed the review structure, wrote the first draft of the manuscript, data validation, visualization, figure captions, final draft. I.M, N.I.R and M.A: supervised and help in drafting process of the research work and revised the first draft. F.A, H.J and H.A: conceptualizations, resources, data validation, review editing and helps in final draft revision. J.P: data validation, resources, supervised the drafting process of the review article, editing of the final draft, suggestions, and critical revision of final draft, project administration and funding acquisition. All authors have read and agreed to the published version of the review article.

Corresponding authors

Correspondence to Fozia Abasi or Jarosław Proćków.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by K. Rybka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Mahmood, I., Qadir, G. et al. Synergistic effect of Paclobutrazol and silver nanoparticles (AgNPs) control the pod shattering in canola (Brassica napus L.) via physiological interferences: a mechanistic overview. Acta Physiol Plant 46, 42 (2024). https://doi.org/10.1007/s11738-024-03664-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-024-03664-6

Keywords

Navigation