Skip to main content
Log in

Ion accumulation, antioxidant activity, growth and tolerance indices of Eucalyptus clones under salt stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Due to the expansion of planted forests, Eucalyptus may end up being planted in saline soil areas. The aim of this study was to assess ion accumulation, antioxidant activity and the growth and tolerance indices of Eucalyptus clones as indicators of salt tolerance. This study used a randomized block design in a 3 × 4 factorial scheme consisting of three Eucalyptus clones (VC865, I224 and I144) and four concentrations of NaCl (0, 1, 2 and 3 g of NaCl kg−1 of soil) with five repetitions. The Eucalyptus clones responded differently to soil salinity: I144 showed lower declines in Ψw, K+ concentrations, leaf dry weight and stem dry weight. In addition, a lower Ψs was associated with an increase in Na+ and proline and a low Na+/K+ ratio, indicating greater osmotic adjustment. This clone, considered the most tolerant to soil salinity, also exhibited greater superoxide dismutase, ascorbate peroxidase and catalase antioxidant enzymes activity, higher relative increment and tolerance indices and lower hydrogen peroxide and lipid peroxidation content. However, the clones VC865 and I224 are moderately tolerant and sensitive, respectively. Based on the soil salinity variables, Eucalyptus clones were classified in the following order of tolerance: I144 > VC865 > I224.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EC:

Electrical conductivity

DAT:

Days after transplantation

Ψw:

Water potential

PD:

Pre-dawn

MD:

Midday

Ψs:

Osmotic potential

SOD:

Superoxide dismutase

APX:

Ascorbate peroxidase

CAT:

Catalase

MDA:

Lipid peroxidation

H2O2 :

Hydrogen peroxide

PH:

Plant height

SD:

Stem diameter

NL:

Number of leaves

RI-PH:

Relative increment indices of plant height

RI-SD:

Relative increment indices of stem diameter

RI-NL:

Relative increment indices of number of leaves

LA:

Leaf area

LDW:

Leaf dry weight

SDW:

Stem dry weight

RDW:

Root dry weight

References

  • Ahmad P (2014) Oxidative damage to plants: antioxidant networks and signaling. Academic Press

    Google Scholar 

  • Ahmed CB, Magdich S, Rouina BB, Boukhris M, Abdullah FB (2012) Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive. J Environ Manage 113:538–544

    Article  CAS  PubMed  Google Scholar 

  • Aquino AJS, Lacerda CF, Bezerra MA, Gomes Filho E, Costa RNT (2007) Crescimento, partição de matéria seca e retenção de Na+, K+ e Cl- em dois genótipos de sorgo irrigados com águas salinas. Rev Bras Ciênc Solo 31:961–971

    Article  Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Bates LS (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bertazzini M, Sacchi GA, Forlani G (2018) A differential tolerance to mild salt stress conditions among six Italian rice genotypes does not rely on Na+ exclusion from shoots. J Plant Physiol 226:145–153

    Article  CAS  PubMed  Google Scholar 

  • Bloise RM, Moreira GNC (1976) Métodos de análise de solos e calcário. EMBRAPA-SNLCS.

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–250

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminum on lipid-peroxidation, superoxide-dismutase, catalase and peroxidase- activities in toor-tips of soybean (Glycine max). Plant Physiol 83:463–468

    Article  CAS  Google Scholar 

  • Cha-um S, Somsueb S, Samphumphuang T, Kirdmanee C (2013) Salt tolerant screening in eucalypt genotypes (Eucalyptus spp.) using photosynthetic abilities, proline accumulation, and growth characteristics as effective indices. In Vitr Cel Dev Biol Plant Sect 49:611–619

    Article  CAS  Google Scholar 

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22:27–34

    Article  CAS  Google Scholar 

  • Chen D, Wang S, Cao B, Cao D, Leng G, Li H, Yin L, Shan L, Deng X (2016) Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci 6:1–15

    Google Scholar 

  • Chunthaburee S, Dongsansuk S, Sanitchon J, Pattanagul W, Theerakulpisut P (2016) Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi J Biol Sci 23:467–477

    Article  CAS  PubMed  Google Scholar 

  • Feikema PM, Baker TG (2011) Effect of soil salinity on growth of irrigated plantation Eucalyptus in south-eastern Australia. Agric Water Manag 98:1180–1188

    Article  Google Scholar 

  • Ferreira MC, Santos RC, Castro RVO, Carneiro ACO, Silva GGC, Castro AFNM, Costa SEL, Pimenta AS (2017) Biomass and energy production at short rotation Eucalyptus clonal plantations deployed in Rio Grande do Norte. Revista Árvore 41:1–7

    Google Scholar 

  • Gholami M, Mokhtarian F, Baninasab B (2015) Seed halopriming improves the germination performance of black seed (Nigella sativa) under salinity stress conditions. J Crop Sci Biotech 18:21–26

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurr High Plants Plant Physiol 59:309–314

    CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:1–19

    Article  CAS  Google Scholar 

  • Havir EA, Mchale NA (1987) Biochemical and developmentl characterization of multiple forms of catalase in tabaco leaves. Plant Physiol 84:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • James RA, Blake C, Zwart AB, Hare RA, Rathjen AJ, Munns R (2012) Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct Plant Biol 39:609–618

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Kishor PBK, Sreenivasulu NESE (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311

    Article  CAS  Google Scholar 

  • Kumar M, Kumar R, Jain V, Jain S (2018) Differential behavior of the antioxidant system in response to salinity induced oxidative stress in salt-tolerant and salt-sensitive cultivars of Brassica juncea L. Bio Agric Biotech 13:12–19

    Article  Google Scholar 

  • Lupi AM, Pathauer OS, Netto V, Cappa EP (2016) Evaluación del crecimiento y estado nutricional de híbridos interespecíficos de Eucalyptus sometidos a estrés por anegamiento y salinidad. Cienc Del Suelo 35:57–68

    Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanism of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-especific peroxidase en spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Otto MSG, Francisco JG, Gonsalez BT, Calvo LA, Mattos EM, Almeida M, Moral RA, Demétrio CGB, Stape JL, Oliveira RF (2017) Changes in c-aminobutyric acid concentration, gas exchange, and leaf anatomy in Eucalyptus clones under drought stress and rewatering. Acta Physiol Plant 39:1–13

    Article  CAS  Google Scholar 

  • Patterson JH, Newbigin ED, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plazek A, Tatrzańska M, Maciejewski M, Koscielniak J, Gondek K, Bojarczuk J, Dubert F (2013) Investigation of the salt tolerance of new Polish bread and durum wheat cultivars. Acta Physiol Plant 35:2513–2523

    Article  CAS  Google Scholar 

  • Rasel M, Tahjib-Ul-Arif M, Hossain MA, Hassan L, Farzana, S, Brestic, M (2020) Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. J Plant Growth Regul:1–16.

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Agriculture Handbook. US Department of Agriculture, Washington.

  • Rossatto T, Amaral MN, Benitez LC, Vighi IL, Braga EJB, Magalhaes Júnior AM, Maia MAC, Pinto LS (2017) Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. Physiol Mol Biol Plants 23:865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Sá FVS, Brito MEB, Silva LA, Moreira RCL, Fernandes PD, Figueiredo LC (2015) Fisiologia da percepção do estresse salino em híbridos de tangerineira “Sunki Comum” sob solução hidropônica salinizada. Comun Sci 6:463–470

    Article  Google Scholar 

  • Sá FVS, Paiva EP, Mesquita EF, Bertino AMP, Barbosa MA, Souto LS (2016) Tolerance of castor bean cultivars under salt stress. Rev Bras Eng Agríc Ambient 20:557–563

    Article  Google Scholar 

  • Shariat A, Assareh MH (2016) Physiological and biochemical responses of eight Eucalyptus species to salinity stress. Ecopersia 4:1269–1282

    Article  Google Scholar 

  • Shvaleva AL, Silva FCE, Breia E, Jouve J, Hausman JF, Almeida MH, Chaves MM (2006) Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiol 26:239–248

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Coitiño EL, Borsani O, Monza J (2013) Molecular mechanisms for the reaction between %OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J Phys Chem B 118:37–47

    Article  CAS  PubMed  Google Scholar 

  • Silva ALL, Oliveira Y, Dibax R, Costa JL, Scheidt GN, Machado MP, Guerra EP, Brondani GE, Alves AS (2012) Hydroponics growth of Eucalyptus saligna Sm. on salt-stress mediated by sodium chloride. J Biotech Biodiv 3:213–218

    Article  Google Scholar 

  • Silva CD, Nascimento JS, Scarpinati EA, Paula RC (2014) Classification of Eucalyptus urograndis hybrids under different water availability based on biometric traits. For Syst 23:209–215

    Google Scholar 

  • Silveira JAG, Silva SLF, Silva EM, Viégas RA (2010) Mecanismos biomoleculares envolvidos com a resistência ao estresse salino em plantas. In: Ghey HR, Dias NS, Lacerda CF (eds) Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados. INCTSal, Fortaleza, pp 161–180.

  • Sixto H, González-González BD, Molina-Rueda JJ, Garrido-Aranda A, Sanchez MM, López G, Gallardo F, Cañellas I, Mounet F, Grima-Pettenati J, Cantón F (2016) Eucalyptus spp. and Populus spp. coping with salinity stress: an approach on growth, physiological and molecular features in the context of short rotation coppice (SRC). Trees 30:1873–1891

    Article  CAS  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanisavljevic NS, Nikolic DB, Jovanovic ZS, Samardzic JT, Radovic SR, Maksimovic VR (2011) Antioxidative enzymes in the response of buckwheat (Fagopyrum esculentum Moench) to complete submergence. Arch Biol Sci 63:399–405

    Article  Google Scholar 

  • Taibi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  • Turkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 6:2–9

    Article  CAS  Google Scholar 

  • Vaario LM, Yrjälä K, Rousi M, Sipilä T, Pulkkinen P (2011) Leaf number indicates salt tolerance of young seedling families of European Aspen (Populus tremula L.) growing in different soils. Silva Fenn 45:19–33

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance role of glycine betaine. Curr Genom 14:157–165

    Article  CAS  Google Scholar 

  • Willadino L, Camara TR (2010) Tolerância das plantas à salinidade: aspectos fisiológicos e bioquímicos. Enciclopédia Biosfera 6:1–23

    Google Scholar 

  • Xiong M, Zhang X, Shabala S, Shabala L, Chen Y, Xiang C, Nawaz MA, Bie Z, Wu H, Yi H, Wu M, Huang Y (2018) Evaluation of salt tolerance and contributing ionic mechanism in nine Hami melon landraces in Xinjiang, China. Sci Hortic 237:277–286

    Article  CAS  Google Scholar 

  • Yan K, Shao H, Shao C, Chen P, Zhao S, Brestic M, Chen X (2013) Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant 35:2867–2878

    Article  CAS  Google Scholar 

  • Zahra J, Nazim H, Faiza I, Zeng J, Tahir A, Zhang G (2020) Physiological and antioxidant responses of cultivated and wild barley under salt stress. Plant Soil Environ 66:334–344

    Article  CAS  Google Scholar 

  • Zuo Z, Ye F, Wang Z, Li S, Li H, Guo J, Mao H, Zhu X, Li X (2021) Salt acclimation induced salt tolerance in wild-type and chlorophyl b-deficient mutant wheat. Plant Soil Environ 67:26–32

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPEAL (Foundation for Research Support of the State of Alagoas, Brazil) for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jailma Ribeiro de Andrade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in this work.

Additional information

Communicated by M. J. Reigosa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, J.R., de Oliveira Maia Júnior, S., da Silva, J.R.R. et al. Ion accumulation, antioxidant activity, growth and tolerance indices of Eucalyptus clones under salt stress. Acta Physiol Plant 44, 52 (2022). https://doi.org/10.1007/s11738-022-03385-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-022-03385-8

Keywords

Navigation