Skip to main content
Log in

Genetic interaction and inheritance of biochemical traits can predict tolerance of hybrid maize cv. SC704 to drought

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

To study gene action and inheritance of some biochemical traits generation mean and generation variance analyses of basic seven generations B73 (as maternal line), MO17 (as paternal line), F1, F2, F3, BC1, and BC2 were conducted at the University of Tabriz agricultural research station (NW-Iran) in 2017. The generations were sown in PVC pipes using a RCBD with 20 replications under three water regimes (100% FC, 55% and 75% available water depletion). The results revealed that based on percent increase of polyphenol oxidase, soluble sugars and proline, SC704 and MO17 were ranked as resistant (enhancement 41.39%, 58.39% and 55.47% in SC704 and 34.25%, 53.75% and 64.51% in MO17, respectively) under severe stress condition. Pearson’s correlation and principal component analysis indicated polyphenol oxidase activity most correlated with proline and soluble sugars and suggest that the important role of these traits in antioxidative defense mechanisms. The findings of the generation mean analysis implied the existence of digenic interactions. The prevalence of dominance variance and low narrow-sense heritability (0.07–0.47) for catalase, peroxidases, and polyphenol oxidase activities under severe stress condition suggest the utilization of a hybrid breeding program such as heterosis and selection in the later generation to facilitate breeding for improvement of these traits. In contrast, additive genetic variance and high narrow-sense heritability (0.53–0.71) for protein content, proline concentration and soluble sugars under severe stress condition revealed that the selection in the parents’ inbred lines or early segregating generations could be useful to improve the aforementioned traits in the maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abid M, Ali S, Qi LK, Zahoor R, Tian Z, Jiang D, Snider JL, Dai T (2018) Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L). Sci Rep 8(1):4615

    PubMed  PubMed Central  Google Scholar 

  • Abid MA, Malik W, Yasmeen A, Qayyum A, Zhang R, Liang C, Guo S, Ashraf J (2016) Mode of inheritance for biochemical traits in genetically engineered cotton under water stress. AoB Plants 8: plw008

  • Akhtar W, Mahmoo T (2017) Response of rice polyphenol oxidase promoter to drought and salt stress. Pak J Bot 49(1):21–23

    CAS  Google Scholar 

  • Akram Z, Ajmal SU, Kiani AA, Jamil M (2007) Genetic analysis of protein, lysine, gluten and flour yield in bread wheat (Triticumaestivum L). PJBS 10(12):1990–1995

    CAS  PubMed  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 300(9):D05109

    Google Scholar 

  • Anju SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23(12):11864–11875

    Google Scholar 

  • Bányai J, Kiss T, Gizaw SA, Mayer M, Spitkó T, Tóth V, Kuti C, Mészáros K, Láng L, Karsai I, Vida G (2020) Identification of superior spring durum wheat genotypes under irrigated and rain-fed conditions. Cereal Res Commun. https://doi.org/10.1007/s42976-020-00034-z

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant soil 39(1):205–207

    CAS  Google Scholar 

  • Boeckx T, Webster R, Winters AL, Webb KJ, Gay A, Kingston-Smith AH (2015a) Polyphenol oxidase-mediated protection against oxidative stress is not associated with enhanced photosynthetic efficiency. Ann Bot 116(4):529–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boeckx T, Winters AL, Webb KJ, Kingston-Smith AH (2015b) Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization? J Exp Bot 66(12):3571–3579

    CAS  PubMed  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14(3):89–97

    CAS  Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277(9):2022–2037

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Google Scholar 

  • Cavalli L (1952) An analysis of linkage in quantitative inheritance. In: Reive ECR, Waddington CH (eds) Quantitative inheritance. HMSO, London, pp 135–144

    Google Scholar 

  • Chen J, Xu W, Velten J, Xin Z, Stout J (2012) Characterization of maize inbred lines for drought and heat tolerance. Soil Water Conserv 67(5):354–364

    Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57(3):449–459

    PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:1–14

    Google Scholar 

  • Dehbalaei S, Farshadfar E, Farshadfar M (2013) Assessment of drought tolerance in bread wheat genotypes based on resistance/tolerance indices. Intl J Agri Crop Sci 5(20):2352–2358

    Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72(4):673–689

    CAS  PubMed  Google Scholar 

  • FAO (2016) Food and Agricultural Organization Statistical Database. Rome, Italy. https://faostat.fao.org

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Google Scholar 

  • Ge TD, Sui FG, Bai LP, Lu YY, Zhou GS (2006) Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agr Sci China 5(4):291–298

    Google Scholar 

  • Gharibi S, Tabatabaei BES, Saeidi G, Goli SAH (2016) Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl Biochem Biotech 178(4):796–809

    CAS  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8(1):93–102

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48(12):909–930

    CAS  Google Scholar 

  • Gorji A, Zonoori Z, Zolnoori M, Jamasbi A (2011) Inheritance of antioxidant activity of triticale under drought stress. Asian J Plant Sci 10(3):220–226

    CAS  Google Scholar 

  • Harakotr B, Suriharn B, Lertrat K, Scott M (2016) Genetic analysis of anthocyanin content in purple waxy corn (Zea mays L. var. ceratina Kulesh) kernel and cob. SABRAO J Breed Genet 48(2):230–239

    Google Scholar 

  • Ignaciuk A, Mason-D'Croz D (2014) Modelling adaptation to climate change in agriculture. OECD Food Agricul Fisher Papers OECD Publish Paris 70:3–57

    Google Scholar 

  • Irigoyen J, Einerich D, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plantarum 84(1):55–60

    CAS  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57(2):315–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karmakar P, Munshi A, Behera T, Kumar R, Sureja A, Kaur C, Singh B (2013) Quantification and inheritance of antioxidant properties and mineral content in ridge gourd (Luffa acutangula). Agric Res 2(3):222–228

    CAS  Google Scholar 

  • Kearsey MJ, Pooni HS (2004) The genetical analysis of quantitative traits. Chapman and Hall, London, p 381

    Google Scholar 

  • Khalil F, Rauf S, Monneveux P, Anwar S, Iqbal Z (2016) Genetic analysis of proline concentration under osmotic stress in sunflower (Helianthus annuus L.). Breeding Sci 66:463–470

    CAS  Google Scholar 

  • Khan NH, Ahsan M, Randhawa MA, Khan AS, Saeed A, Naeem MS (2014) Estimation of genetic components for various physiological traits in maize (Zea mays L.) under water defficit conditions. J Glob Innov Agric Soc Sci 2(2):55–61

    CAS  Google Scholar 

  • Khodambashi M, Bitaraf N, Hoshmand S (2012) Generation mean analysis for grain yield and its related traits in lentil. J Agr Sci Tech 14:609–616

    Google Scholar 

  • Köşkeroğlu S, Tuna AL (2010) The investigation on accumulation levels of proline and stress parameters of the maize (Zea mays L.) plants under salt and water stress. Acta Physiol Plant 32(3):541–549

    Google Scholar 

  • Kravić N, Andjelković V, Ristić D, Babić V, Drinić SM (2016) Variability for agro-morphological traits of maize (Zea mays L.) inbred lines differing in drought tolerance. Ekin J Crop Breed Genetic 2(2):25–32

    Google Scholar 

  • Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants 8(4):94

    CAS  PubMed Central  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Liu S, Hao Z, Weng J, Li M, Zhang D, Pan G, Zhang S, Li X (2015) Identification of two functional markers associated with drought resistance in maize. Mol Breeding 35(1):53

    Google Scholar 

  • LiXin Z, ShengXiu L, ZongSuo L (2009) Differential plant growth and osmotic effects of two maize (Zea mays L) cultivars to exogenous glycinebetaine application under drought stress. Plant Growth Regul 58(3):297–305

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    CAS  PubMed  Google Scholar 

  • Mather K, Jinks JL (1982) Biometrical genetics: The study of continuous variation, 3rd edn. Springer, US, p 396

    Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? a review. Phytochemistry 67(21):2318–2331

    CAS  PubMed  Google Scholar 

  • Mbogo PO, Dida MM, Owuor B (2015) Generation means analysis for estimation of genetic parameters for striga hermonthica resistance in maize (Zea mays L.). J Agr Sci 7(8):143–155

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    CAS  PubMed  Google Scholar 

  • Mohammadkhani N, Heidari R (2008) Effects of drought stress on soluble proteins in two maize varieties. Turkish J Biol 32(1):23–30

    CAS  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  Google Scholar 

  • Naroui Rad MR, Kadir MA, Yusop MR, Jaafar HZ, Danaee M (2013) Gene action for physiological parameters and use of relative water content (RWC) for selection of tolerant and high yield genotypes in F2 population of wheat. Aust J Crop Sci 7(3):407–413

    CAS  Google Scholar 

  • Nassourou MA, Njintang YN, Noubissié TJB, Nguimbou RM, Bell JM (2017) Genetics of seed flavonoid content and antioxidant activity in cowpea (Vigna unguiculata L Walp). Crop J 4(5):391–397

    Google Scholar 

  • Nazari L, Pakniyat H (2010) Assessment of drought tolerance in barley genotypes. J Appl Sci 10(2):151–156

    Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Nat Acad Sci 104(42):16450–16455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnol 33(8):9–862

    Google Scholar 

  • Pathak N, Singh M, Mishra M, Saroj S (2015) Nature of gene action for yield and its components in mungbean (Vigna radiata). Indian J Agr Sci 85(4):504–508

    CAS  Google Scholar 

  • Pourmohammad A, Toorchi M, Alavikia SS, Shakiba MR (2014) Genetic analysis of yield and physiological traits in sunflower (Helianthus annuus L.) under irrigation and drought stress. Not Sci Biol 6(2):207–213

    Google Scholar 

  • Prabhu S, Ganesan NM, Jeyaprakash P, Selvakumar R, Prabhakaran N (2017) Generation mean analysis for yield and its contributing characters in F2 populations of rice (Oryza sativa L. Int J Pure App Biosci 5(4):373–380

    Google Scholar 

  • Qi X, Zhao Y, Jiang L, Cui Y, Wang Y, Liu B (2009) QTL analysis of kernel soluble sugar content in supersweet corn. Afr J Biotechnol 8(24):6913–6917

    CAS  Google Scholar 

  • Rachkovskaya M, Kim L (1980) Changes in activities of some oxidases as an index of plant adaptation to industrial pollutants. In: Nikolaevskii VS (ed) Gazoustoichivost’ rastenii (Plant Tolerance to Gases). Nauka, Novosibirsk, pp 26–117

    Google Scholar 

  • Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize: quantitative variation and polypeptide identification. Plant Physiol 117(4):1253–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars: metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4(5):388–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Said AA (2014) Generation mean analysis in wheat (Triticum aestivum L.) under drought stress conditions. AOAS 59(2):177–184

    Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285

    CAS  PubMed Central  Google Scholar 

  • Shi H, Wang B, Yang P, Li Y, Miao F (2016) Differences in sugar accumulation and mobilization between sequential and non-sequential senescence wheat cultivars under natural and drought conditions. PLoS ONE 11(11):e0166155

    PubMed  PubMed Central  Google Scholar 

  • Sinay H, Arumingtyas EL, Harijati N, Indriyani S (2016) Proline content and yield components of local corn cultivars from Kisar Island, Maluku. Indonesia Int J Plant Biol 6(1):6071

    Google Scholar 

  • Soltani A, Waismoradi A, Heidari M, Rahmati H (2013) Effect of water deficit stress and nitrogen on yield and compatibility metabolites on two medium maturity corn cultivars. IJACS 5(7):737–733

    Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161(3):613–619

    CAS  Google Scholar 

  • Talaat NB (2014) Effective microorganisms enhance the scavenging capacity of the ascorbate–glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils. Plant Physiol Bioch 80:136–143

    CAS  Google Scholar 

  • Taranto F, Pasqualone A, Mangini G, Tripodi P, Miazzi MM, Pavan S, Montemurro C (2017) Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. Int J Mol Sci 18(2):377

    PubMed Central  Google Scholar 

  • Thipyapong P, Melkonian J, Wolfe DW, Steffens JC (2004) Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci 167(4):693–703

    CAS  Google Scholar 

  • Timsina J, Buresh RJ, Dobermann A, Dixon J (2011) Rice-maize systems in Asia: current situation and potential. IRRI, Los Banōs

    Google Scholar 

  • Udomchalothorn T, Maneeprasobsuk S, Bangyeekhun E, Boon-Long P, Chadchawan S (2009) The role of the bifunctional enzyme, fructose-6-phosphate-2-kinase/fructose-2, 6-bisphosphatase, in carbon partitioning during salt stress and salt tolerance in rice (Oryza sativa L.). Plant Sci 176(3):334–341

    CAS  Google Scholar 

  • Van Huystee R, Cairns W (1982) Progress and prospects in the use of peroxidase to study cell development. Phytochemistry 21(8):1843–1847

    Google Scholar 

  • Vaughn KC, Duke SO (1984) Function of polyphenol oxidase in higher plants. Physiol Plant 60(1):106–112

    CAS  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140

    PubMed  PubMed Central  Google Scholar 

  • Vieira EA, da Cruz CD, Freschi L, da Silva EA, Braga MR (2017) The dual strategy of the bromeliad Pitcairnia burchellii Mez to cope with desiccation. Environ Exp Bot 143:135–148

    CAS  Google Scholar 

  • Vieira EA, das Graças Silva M, Moro CF, Laura VA, (2017) Physiological and biochemical changes attenuate the effects of drought on the Cerrado species Vatairea macrocarpa (Benth.) Ducke. Plant Physiol Biochem 115:472–483

  • Voskresenskaya O (2006) Some ecological and physiological mechanisms of adaptation in annual plant ontogeny. In: Voskresenskaya OL (ed) Polyvariant development of organisms, populations and communities. Mariisk Gos Univ, Yoshkar-Ola, pp 77–86

    Google Scholar 

  • Wattoo FM, Saleem M, Ahsan M, Sajjad M, Ali W (2009) Genetic analysis for yield potential and quality traits in maize (Zea mays L.). Am- Eurasian J Environ Sci 6:723–729

    Google Scholar 

  • Zaidi P, Maniselvan P, Srivastava A, Yadav P, Singh R (2010) Genetic analysis of water-logging tolerance in tropical maize (Zea mays L). Maydica 55(1):17–26

    Google Scholar 

  • Zenda T, Liu S, Wang X, Liu G, Jin H, Dong A, Yang Y, Duan H (2019) Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. Int J Mol Sci 20(6):1268

    CAS  PubMed Central  Google Scholar 

  • Zhang X, Lei L, Lai J, Zhao H, Song W (2018) Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biol 18(1):68

    PubMed  PubMed Central  Google Scholar 

  • Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Li C, Hu X (2016) The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Front Plant Sci 7:1471

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate the University of Mohaghegh Ardabili and University of Tabriz for the financial supports [Grant No. 2312] of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Y. Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirinpour, M., Asghari, A., Aharizad, S. et al. Genetic interaction and inheritance of biochemical traits can predict tolerance of hybrid maize cv. SC704 to drought. Acta Physiol Plant 42, 124 (2020). https://doi.org/10.1007/s11738-020-03110-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03110-3

Keywords

Navigation