Skip to main content
Log in

Regulation of endogenous phytohormones and essential metabolites in frankincense-producing Boswellia sacra under wounding stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Boswellia sacra is an economically and ecologically important frankincense-producing tree, which is wounded to extract the aromatic resin. However, the underlying physiological mechanisms following this wounding stress are unknown. Our current goal was to elucidate the regulation of key physio-molecular determinants of wounded and preserved B. sacra populations. Wounding caused a twofold increase in calcium/magnesium content and a reduction in essential macronutrient (nitrogen) levels. Total amino acids were also reduced 1.74-fold; however, the levels of γ-amino butyric acid, hydroxyl-proline, and β-alanine were significantly higher (1- to 2.2-fold). In contrast, the fatty acids (linolenic, palmitic, stearic, and linoleic acids) were significantly higher in the preserved trees. Endogenous jasmonic acid (JA) was also significantly higher (67%) in the wounded trees, as was the expression of the JA-related genes allene oxide synthase and allene oxide cyclase. A similar twofold increase in stress-responsive abscisic acid was observed in the wounded trees. However, salicylic acid was down-regulated, and the pathogenesis-related genes PR1 and PR3 exhibited varying responses in the wounded plants. The presence of physiologically active (GA1, GA4, and GA3) and inactive (GA12, GA19, and GA20) gibberellins in both the wounded and control trees revealed similarity with the known GA biosynthesis in B. sacra. Both GA4 and GA3 were each significantly synthesized, which were buoyed by the increased expressions of ent-copalyl diphosphate synthase, cytochrome P450 monooxygenases, and gibberellin 20 oxidases under wounding stress. In conclusion, B. sacra responds to extraction of resin by regulating essential endogenous hormones and related transcripts, which in return retard tree growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Harrasi A, Al-Saidi S (2008) Phytochemical analysis of the essential oil from botanically certified oleogum resin of Boswellia sacra (Omani Luban). Molecules 13(9):2181–2189

    Article  PubMed  CAS  Google Scholar 

  • Almodares A, Hadi MR, Dosti B (2008) The effects of salt stress on growth parameters and carbohydrates contents in sweet sorghum. Res J Environ Sci 2:298–304

    Article  Google Scholar 

  • Bown AW, Shelp BJ (2016) Plant GABA: not just a metabolite. Trends Plant Sci 21(10):811–813

    Article  PubMed  CAS  Google Scholar 

  • Castonguay Y, Nadeau P, Lechasseur P, Chouinard L (1995) Differential accumulation of carbohydrates in alfalfa cultivars of contrasting winter hardiness. Crop Sci 35:509–516

    Article  CAS  Google Scholar 

  • Chan KL, Ho CL, Namasivayam P, Napis S (2007) A simple and rapid method for RNA isolation from plant tissues with high phenolic compounds and polysaccharides. Nat Protoc. https://doi.org/10.1038/nprot.2007.184

    Article  PubMed  Google Scholar 

  • Couee I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57(3):449–459

    Article  PubMed  CAS  Google Scholar 

  • Eshete A, Teketay D, Lemenih M, Bongers F (2012) Effects of resin tapping and tree size on the purity, germination and storage behavior of Boswellia papyrifera (Del.) Hochst. seeds from Metema District, northwestern Ethiopia. Forest Ecol Manag 269:31–36

    Article  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill PK, Sharma AD, Singh P, Bhullar SS (2001) Effect of various abiotic stresses on the growth soluble sugars and water relations of sorghum seedlings grown in light and darkness. Bulg J Plant Physiol 27:72–84

    CAS  Google Scholar 

  • Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. Crop J 4(2):83–91

    Article  Google Scholar 

  • Hedden P, Thomas SG (2016) Annual plant reviews, the gibberellins. Wiley, Hoboken

    Book  Google Scholar 

  • Hood S, Sala A (2015) Ponderosa pine resin defenses and growth: metrics matter. Tree Physiol 35(11):1223–1235

    PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, Lee SM, Park YG, Kim AY, Seo CW, Lee IJ (2015) Enterobacter sp. SE992-induced regulation of amino acids, sugars, and hormones in cucumber plants improves salt tolerance. Acta Physiol Plant 37(8):149. https://doi.org/10.1007/s11738-015-1895-7

    Article  CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Diterpene resin acids in conifers. Phytochem 67(22):2415–2423

    Article  CAS  Google Scholar 

  • Keunen ELS, Peshev D, Vangronsveld J, Van Den Ende WIM, Cuypers ANN (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36(7):1242–1255

    Article  PubMed  CAS  Google Scholar 

  • Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin JH, Lee IJ (2016) Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PloS One 11(6):e0158207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Khan MA, Kang SM, Kim YH, Yun BW, Al-Rawahi A (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    Article  CAS  Google Scholar 

  • Lacombe B, Achard P (2016) Long-distance transport of phytohormones through the plant vascular system. Curr Opin Plant Biol 34:1–8

    Article  PubMed  CAS  Google Scholar 

  • Langenheim JH (2003) Plant resins: chemistry, evolution, ecology, and ethnobotany. Timber Press, Portland

    Google Scholar 

  • Lautner S, Fromm J (2010) Calcium-dependent physiological processes in trees. J Plant Biol 12(2):268–274

    Article  CAS  Google Scholar 

  • Lee IJ, Foster K, Morgan PW (1998) Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol 116:1003–1011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lombardero MJ, Ayres MP, Lorio PL Jr, Ruel JJ (2000) Environmental effects on constitutive and inducible resin defences of Pinus taeda. Ecol Lett 3(4):329–339

    Article  Google Scholar 

  • Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T et al (2013) CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci 110(5):1947–1952

    Article  PubMed  PubMed Central  Google Scholar 

  • McCloud ES, Baldwin IT (1997) Herbivory and caterpillar regurgitants amplify the wound induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430–435

    Article  CAS  Google Scholar 

  • Mengistu T, Sterck FJ, Fetene M, Bongers F (2013) Frankincense tapping reduces the carbohydrate storage of Boswellia trees. Tree Physiol 33(6):601–608

    Article  PubMed  CAS  Google Scholar 

  • Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167

    Article  PubMed  CAS  Google Scholar 

  • Niethammer P (2016) The early wound signals. Curr Opin Genet Dev 40:17–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey SP, Srivastava S, Goel R, Lakhwani D, Singh P, Asif MH, Sane AP (2017) Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding. Sci Rep 7:44729. https://doi.org/10.1038/srep44729

    Article  PubMed  PubMed Central  Google Scholar 

  • Prisic S, Xu M, Wilderman PR, Peters RJ (2004) Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions. Plant Physiol 136(4):4228–4236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi QG, Rose PA, Abrams GD, Taylor DC, Abrams SR, Cutler AJ (1998) Abscisic acid metabolism, 3-ketoacyl-coenzyme a synthase gene expression and verylong-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol 117:979–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raffaelli M, Mosti S, Tardelli M (2003) The Frankincense Tree (Boswellia sacra Flueck, Burseraceae) in Dhofar, southern Oman: field-investigations on the natural treatments. Webbia 58(1):133–149

    Article  Google Scholar 

  • Regnault T, Davière JM, Achard P (2016) Long-distance transport of endogenous gibberellins in Arabidopsis. Plant Signal Behav. 11(1):e1110661

    Article  PubMed  CAS  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ et al (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53(3):488–504

    Article  PubMed  CAS  Google Scholar 

  • Scholz SS, Reichelt M, Mekonnen DW, Ludewig F, Mithöfer A (2015) Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response. Front Plant Sci 6:1128

    Article  PubMed  PubMed Central  Google Scholar 

  • Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392

    Article  PubMed Central  CAS  Google Scholar 

  • Shen Q, Li L, Jiang Y, Wang Q (2016) Functional characterization of ent-copalyl diphosphate synthase from Andrographis paniculata with putative involvement in and rographolides biosynthesis. Biotechnol Lett 38(1):131–137

    Article  PubMed  CAS  Google Scholar 

  • Su P, Tong Y, Cheng Q, Hu Y, Zhang M, Yang J, Teng Z, Gao W, Huang L (2016) Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway. Sci Rep 6:23057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D, Luo Y, Dion E, Fukui G, Kumazaki A, Nakano R (2016) ABA is required for plant acclimation to a combination of salt and heat stress. PloS One 11(1):e0147625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tadesse W, Feleke S, Eshete T (2004) Comparative study of traditional and new tapping methods on frankincense yield of Boswellia papyrifera. Eth J Nat Res 6:287–299

    Google Scholar 

  • Tao X, Mao L, Li J, Chen J, Lu W, Huang S (2016) Abscisic acid mediates wound-healing in harvested tomato fruit. Postharvest Biol Technol 118:128–133

    Article  CAS  Google Scholar 

  • Tolera M, Sass-Klaassen U, Eshete A, Bongers F, Sterck F (2015) Frankincense yield is related to tree size and resin-canal characteristics. Forest Ecol Manag 353:41–48

    Article  Google Scholar 

  • Vijayakumari K, Jisha KC, Puthur JT (2016) GABA/BABA priming: a means for enhancing abiotic stress tolerance potential of plants with less energy investments on defence cache. Acta Physiol Plant 38(9):230

    Article  CAS  Google Scholar 

  • Zhou M, Memelink J (2016) Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 34(4):441–449

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Yan S, Sun C, Li S, Li J, Xu M, Liu X, Zhang S, Zhao Q, Li Y, Fan Y (2015) A maize jasmonate Zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PloS One 10(3):e0121824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Research Council Oman through the Open Research Grant Program (ORG/EBR/15/007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Al-Harrasi or In-Jung Lee.

Additional information

Communicated by PK Nagar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Information 1

: Endogenous abscisic acid, jasmonic acid, and salicylic acid of incised and control Boswellia sacra treatments (DOCX 15 KB)

Supplementary Information 2

: Endogenous gibberellic acid of incised and control Boswellia sacra treatments (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.L., Al-Harrasi, A., Shahzad, R. et al. Regulation of endogenous phytohormones and essential metabolites in frankincense-producing Boswellia sacra under wounding stress. Acta Physiol Plant 40, 113 (2018). https://doi.org/10.1007/s11738-018-2688-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2688-6

Keywords

Navigation