Skip to main content
Log in

Changes in plasma membrane aquaporin gene expression under osmotic stress and blue light in tomato

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Divergent abiotic stresses induce osmotic stress on plant cells resulting in an imbalance in water homeostasis which is preserved by aquaporins. Since the plasma membrane aquaporins (PIPs) were shown to be involved in seed development and responses to abiotic stresses, we focused on determining the contribution of mannitol-induced osmotic stress, blue light (BL), and 7B-1 mutation to their gene expression in tomato (Solanum lycopersicum L.) seeds. To assess that, we used a quantitative RT-PCR to determine the expression profiles of genes encoding PIPs. Subsequently, a multiple linear regression analysis was used to evaluate the impact of studied stressors (mannitol and BL) and 7B-1 mutation on PIP gene expressions. We found that mannitol-induced osmotic stress and 7B-1 mutation (conferring the lower responsiveness to osmotic stress- and BL-induced inhibition of seed germination) decreased expression of PIP1;3, PIP2;3 and PIP1;2, PIP2;1 genes, respectively. This might be a way to retain water for radicle elongation and seed germination under the stress conditions. Interestingly, the expression of PIP1;3 gene was downregulated not only by osmotic stress, but also by BL. Altogether, our data indicate the existence of a link between osmotic stress and BL signalling and the involvement of the 7B-1 mutation in this crosstalk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59(3):469–484

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57

    Article  CAS  PubMed  Google Scholar 

  • Baaziz B, Lopez D, Rabot A, Combes D, Gousset A, Bouzid S, Cochard H, Sakr S, Venisse JS (2012) Light-mediated leaf induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study. Tree Physiol 32(4):423–434

    Article  PubMed  Google Scholar 

  • Bergougnoux V, Hlaváčková V, Plotzová R, Novák O, Fellner M (2009) The 7B-1 mutation in tomato confers a blue light-specific lower sensitivity to coronatine, a toxin produced by Pseudomonas syringae pv. tomato. J Exp Bot 60:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Tyree MT, Sakr S (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol 143(1):122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekkers BJW, Willems L, Bassel GW, van Bolderen-Veldkamp RP, Ligterink W, Hilhorst HWM, Bentsink L (2012) Identification of reference genes for RT-qPCR expression analysis in arabidopsis and tomato seeds. Plant Cell Physiol 53(1):28–37

    Article  CAS  PubMed  Google Scholar 

  • Fellner M, Sawhney VK (2001) Seed germination in a tomato male-sterile mutant is resistant to osmotic, salt and low-temperature stresses. Theor Appl Genet 102:215–221

    Article  CAS  Google Scholar 

  • Fellner M, Sawhney VK (2002) The 7B-1 mutant in tomato shows blue-light-specific resistance to osmotic stress and abscisic acid. Planta 214:675–682

    Article  CAS  PubMed  Google Scholar 

  • Fellner M, Zhang R, Pharis RP, Sawhney VK (2001) Reduced de-etiolation of hypocotyl growth in a tomato mutant is associated with hypersensitivity to, and high endogenous levels of, abscisic acid. J Exp Bot 52:725–738

    Article  CAS  PubMed  Google Scholar 

  • Goggin DE, Steadman KJ (2012) Blue and green are frequently seen: responses of seeds to short- and mid-wavelength light. Seed Sci Res 22:27–35

    Article  Google Scholar 

  • Hlavinka J, Nauš J, Fellner M (2013) Spontaneous mutation 7B-1 in tomato impairs blue light-induced stomatal opening. Plant Sci 209:75–80

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54(5):713–725

    Article  CAS  PubMed  Google Scholar 

  • Ježilová E, Fellner M, Bergougnoux V, Špundová M (2012) Is the rate of photosynthesis under blue light altered in the 7B-1 tomato mutant? Photosynthetica 50:477–480

    Article  Google Scholar 

  • Kaldenhoff R, Eckert M (1999) Features and function of plant aquaporins. J Photochem Photobiol B Biol 52(1):1–6

    Article  CAS  Google Scholar 

  • Kaldenhoff R, Kölling A, Richter G (1993) A novel blue light-and abscisic acid-inducible gene of Arabidopsis thaliana encoding an intrinsic membrane protein. Plant Mol Biol 23(6):1187–1198

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Kölling A, Meyers J, Karmann U, Ruppel G, Richter G (1995) The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma. Plant J 7(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Kölling A, Richter G (1996) Regulation of the Arabidopsis thaliana aquaporin gene AthH2 (PIP1b). J Photochem Photobiol B Biol 36(3):351–354

    Article  CAS  Google Scholar 

  • Lian HL, Yu X, Ye Q, Ding X, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    Article  CAS  PubMed  Google Scholar 

  • Lian HL, Yu X, Lane D, Sun WN, Tang ZC, Su WA (2006) Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment. Cell Res 16(7):651–660

    Article  CAS  PubMed  Google Scholar 

  • Liang WH, Li L, Zhang F, Liu YX, Li MM, Shi HH, Li H, Shang F, Lou C, Lin QT, Li JJ, Yang XG (2013) Effects of abiotic stress, light, phytochromes and phytohormones on the expression of OsAQP, a rice aquaporin gene. Plant Growth Regul 69(1):21–27

    Article  CAS  Google Scholar 

  • Liu HY, Yu X, Cui DY, Sun MH, Sun WN, Tang ZC, Kwak SS, Su WA (2007) The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Res 17:638–649

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li C, Liang D, Ma F, Wang S, Wang P, Wang R (2013) Aquaporin expression in response to water-deficit stress in two Malus species: relationship with physiological status and drought tolerance. Plant Growth Regul 70(2):187–197

    Article  CAS  Google Scholar 

  • Lorenz A, Kaldenhoff R, Hertel R (2003) A major integral protein of the plant plasma membrane binds flavin. Protoplasma 221(1):19–30

    Article  CAS  PubMed  Google Scholar 

  • Lovdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem 237:238–242

    Article  Google Scholar 

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28(1):85–96

    Article  CAS  Google Scholar 

  • Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95(4):1321–1358

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Obroucheva NV (2012) Transition from hormonal to nonhormonal regulation as exemplified by seed dormancy release and germination triggering. Russ J Plant Physl 59:591–600

    Article  Google Scholar 

  • Obroucheva NV (2013) Aquaporins in seeds. Seed Sci Res 23(4):213–216

    Article  Google Scholar 

  • Obroucheva NV, Sinkevich IA, Lityagina SV, Novikova GV (2017) Water relations in germinating seeds. Russ J Plant Physiol 64(4):625–633

    Article  CAS  Google Scholar 

  • Omidvar V, Fellner M (2015) DNA methylation and transcriptomic changes in response to different lights and stresses in 7B-1 male-sterile tomato. PLoS One 10(4):e0121864

    Article  PubMed  PubMed Central  Google Scholar 

  • Omidvar V, Mohorianu I, Dalmay T, Fellner M (2015) miRNA regulation of abiotic stress-response in 7B-1 male-sterile tomato mutant. Plant Genome 8:1–13

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piterková J, Luhová L, Hofman J, Turečková V, Novák O, Petřivalský M, Fellner M (2012) Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions. Ann Bot 110:767–776

    Article  PubMed  PubMed Central  Google Scholar 

  • Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schäffner AR, Maurel C (2010) A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol 152(3):1418–1430

    Article  CAS  PubMed  Google Scholar 

  • Pucci A, Picarella ME, Mazzucato A (2017) Phenotypic, genetic and molecular characterization of 7B-1, a conditional male-sterile mutant in tomato. Theor Appl Genet. https://doi.org/10.1007/s00122-017-2964-7

    PubMed  Google Scholar 

  • Sawhney VK (1997) Genic male sterility. In: Shivanna KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 183–198

    Chapter  Google Scholar 

  • Sheoran IS, Dumonceaux T, Datla R, Sawhney VK (2006) Anthocyanin accumulation in the hypocotyl of an ABA-over producing male-sterile tomato (Lycopersicon esculentum) mutant. Physiol Plant 127:681–689

    Article  CAS  Google Scholar 

  • Sheoran IS, Ross AR, Olson DJ, Sawhney VK (2009) Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): a proteomic analysis. J Proteomics 71:624–636

    Article  CAS  PubMed  Google Scholar 

  • Shiota H, Sudoh T, Tanaka I (2006) Expression analysis of genes encoding plasma membrane aquaporins during seed and fruit development in tomato. Plant Sci 171:277–285

    Article  CAS  Google Scholar 

  • Tian S, Wang X, Li P, Wang H, Ji H, Xie J, Qiu Q, Shen D, Dong H (2016) Plant aquaporin AtPIP1; 4 links apoplastic H2O2 induction to disease immunity pathways. Plant Physiol 171:1635–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toole EH, Hendricks SB, Borthwick HA, Toole VK (1956) Physiology of seed germination. Annu Rev Plant Physiol 7(1):299–324

    Article  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  CAS  PubMed  Google Scholar 

  • Uehlein N, Sperling H, Heckwolf M, Kaldenhoff R (2012) The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ 35(6):1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Willigen CV, Postaire O, Tournaire-Roux C, Boursiac Y, Maurel C (2006) Expression and inhibition of aquaporins in germinating Arabidopsis seeds. Plant Cell Physiol 47(9):1241–1250

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Tomáš Fürst for the critical comments about statistical analysis. We thank Renáta Plotzová and Věra Chytilová for technical assistance. We thank Vipen K. Sawhney for providing 7B-1 mutant seeds and Jan Nauš for measurements of the PFD of the light. This work was supported by Ministry of Education, Youth and Sports of the Czech Republic (Project Nos. ME10020 and LO1204) and Operational Programs Education for Competitiveness-European Social Fund (Project No. CZ.1.07/2.3.00/30.0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fellner.

Additional information

Communicated by Z. Miszalski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balarynová, J., Danihlík, J. & Fellner, M. Changes in plasma membrane aquaporin gene expression under osmotic stress and blue light in tomato. Acta Physiol Plant 40, 27 (2018). https://doi.org/10.1007/s11738-017-2602-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2602-7

Keywords

Navigation