Skip to main content
Log in

UV-B radiation and temperature stress-induced alterations in metabolic events and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The present investigation is aimed to understand how a bloom-forming cyanobacterium Microcystis aeruginosa adapts to changing climatic conditions. The cyanobacterium was exposed to stresses of UV-B (2 Wm−2) radiation and temperature (45 °C) for desired time intervals. Results showed that both the stresses affect growth and photosynthetic efficiency of M. aeruginosa. More than 50% loss of survival and content of photosynthetic pigments was noted after 4 h treatment of both the above stresses. Such changes were mainly due to the generation of reactive oxygen species which cause damage to proteins, DNA, lipids, and modulation of the membrane stability. An increase in the proline accumulation was noted in the cells which probably negates the harmful effects. In addition, activity of antioxidative enzymes namely, catalase, superoxide dismutase, ascorbate peroxidase, and peroxidase was induced by 1.5–3.0-fold on 3 h of UV-B and temperature treatment indicating their possible role in protection. Interestingly, induction of photoprotective compound, mycosporine-like amino acids (MAAs) were also found under UV-B stress which might be an additional strategy of defense mechanism for the survival of the cyanobacterium. Analysis of photoprotective compound revealed shinorine as the main MAA synthesized by the cyanobacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allakhverdiev SI, Los DA, Murata N (2009) Regulatory roles of photosynthesis of unsaturated fatty acids in membrane lipids. In: Wada H, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions. Springer, Dordrecht, pp 373–388

    Chapter  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Babele PK, Singh G, Tyagi MB, Sinha RP, Kumar A (2012) Ultraviolet-B radiation effects on cyanobacteria and the role of sunscreen pigments in its protection. Phykos 42:1–13

    Google Scholar 

  • Backor M, Fahselt D, Wu CT (2004) Free proline content is positively correlated with copper tolerance of the lichen photobiont Trebouxia erici (chlorophyta). Plant Sci 167:151–157

    Article  CAS  Google Scholar 

  • Bais AF, McKenzie RL, Bernhard G, Aucamp PJ, Ilyas M, Madronich S, Tourpalia K (2014) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 14:19–52

    Article  Google Scholar 

  • Basak M, Sharma M, Chakraborty U (2001) Biochemical responses of Camellia sinensis (L) O. Kuntze to heavy metal stress. J Environ Biol 22:37–41

    CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Tear ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Camejo D, Jimenez A, Alarcon JJ, Torres W, Gomez JM, Sevilla F (2006) Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol 33:177–187

    Article  CAS  Google Scholar 

  • Carmichael WW, Azevedo SMFO, An JS, Molica RJR, Jochimsen EM, Lau S, Rinehart KL, Shaw GR, Eaglesham GK (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Persp 109:663–668

    Article  CAS  Google Scholar 

  • Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9:387–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Song L, Sedmak B (2013) UV-B radiation as a potential selective factor favoring microcystin producing bloom-forming cyanobacteria. PLoS One 8:e73919. doi:10.1371/journal.pone.0073919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Gao K, Li P, Watanabe T, Helbling EW (2008) Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis and DNA of Arthrospira (Spirulina) platensis (cyanophyta). J Phycol 44:777–786

    Article  PubMed  Google Scholar 

  • Häder DP, Williamson CE, Wangberg SA, Rautio M, Rose KC, Gao K, Helbling EW, Sinha RP, Worrest R (2015) Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem Photobiol Sci 14:108–126

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press Inc, New York, p 107

    Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hargreaves A, Taiwo FA, Duggan O, Kirk SH, Ahmad SI (2007) Near-ultraviolet photolysis of b-phenylpyruvic acid generates free radicals and results in DNA damage. J Photochem Photobiol B Biol 89:110–116

    Article  CAS  Google Scholar 

  • He YY, Häder DP (2002) Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem Photobiol Sci 1:729–736

    Article  CAS  PubMed  Google Scholar 

  • Herman JR (2010) Global increase in UV irradiance during the past 30 years (1979–2008) estimated from satellite data. J Geophys Res 115:D04203. doi:10.1029/2009JD012219

    Google Scholar 

  • Hu C, Voller G, Submuth R, Dittmann E, Kehr JC (2015) Functional assessment of mycosporine-like amino acids in Microcystis aeruginosa strain PCC 7806. Environ Microbiol 17:1548–1559. doi:10.1111/1462-2920.12577

    Article  CAS  PubMed  Google Scholar 

  • Johnk KD, Huisman J, Sharples J, Sommeijeri B, Visser PM, Strooms JM (2008) Summer heat waves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512

    Article  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 81:1865–1879

    Article  Google Scholar 

  • Kumar A, Tyagi MB, Jha PN (2004) Evidences showing ultraviolet-B radiation-induced damage of DNA in cyanobacteria and its detection by PCR assay. Biochem Biophys Res Commun 318:1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Babele PK, Singh D, Kumar A (2016) UV-B radiation stress causes alterations in whole cell protein profile and expression of certain genes in the rice phyllospheric bacterium Enterobacter cloacae. Front Microbiol 7:1–14. doi:10.3389/fmicb.2016.01440

    Google Scholar 

  • Kyungsil C, Pauli S, Marianne P (2004) Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana. J Exp Mar Biol Ecol 298:111–123

    Article  Google Scholar 

  • Li M, Hu CW, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  PubMed  Google Scholar 

  • Llabres M, Agusti S, Fernandez M, Canepa A, Maurin F, Vidal F, Duarte CM (2013) Impact of elevated UVB radiation on marine biota: a meta-analysis. Glob Ecol Biogeog 22:131–144

    Article  Google Scholar 

  • Madronich S, McKenzie RL, Bjorn O, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B Biol 46:5–19

    Article  CAS  Google Scholar 

  • Manney GL, Santee ML, Rex M, Livesey NJ, Pitts MC, Veefkind P, Nash ER, Wohltmann I, Lehmann R, Froidevaux L, Poole LR, Schoeberl MR, Haffner DP, Davies J, Dorokhov V, Gernandt H, Johnson B, Kivi R, Kyro E, Larsen N, Levelt PF, Makshtas A, McElroy CT, Nakajima H, Parrondo MC, Tarasick DW, von der Gathen P, Walker KA, Zinoviev NS (2011) Unprecedented arctic ozone loss in 2011. Nature 478:469–475

    Article  CAS  PubMed  Google Scholar 

  • Marwood CA, Greenberg BM (1996) Effect of supplementary UV-B radiation on chlorophyll synthesis and accumulation of photosystems during chloroplast development in Spirodela oligorrhiza. Photochem Photobiol 64:664–670. doi:10.1111/j.1751-1097.1996.tb03121.x

    Article  CAS  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Naudts K, Van den Berge J, Farfan E, Rose P, AbdElgawad H, Ceulemans R, Janssens IA, Asard H, Nijs I (2014) Future climate alleviates stress impact on grassland productivity through altered antioxidant capacity. Env Exp Bot 99:150–158

    Article  CAS  Google Scholar 

  • Pourzand C, Tyrrell RM (1999) Apoptosis, the role of oxidative stress and the example of solar UV radiation. Photochem Photobiol 70:380–390

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Singh SP, Hader DP, Sinha RP (2011) Ultraviolet-B-induced DNA damage and photorepair in the cyanobacterium Anabaena variabilis PCC 7937. Env Exp Bot 74:280–288

    Article  CAS  Google Scholar 

  • Richa Sinha RP (2015) Biochemical characterization of sunscreening mycosporine-like amino acids from two Nostoc species inhabiting diverse habitats. Protoplasma 252:199–208

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Appl Microbiol 111:1–61

    Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Env Exp Bot 69:225–232

    Article  Google Scholar 

  • Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 13–35

    Google Scholar 

  • Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, Prickett TF, Helm RF, Gregory EM, Potts M (2000) Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J Bacteriol 182:189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Babele PK, Sinha RP, Tyagi MB, Kumar A (2013) Enzymatic and non-enzymatic defense mechanisms against ultraviolet-B radiation in two Anabaena species. Process Biochem 48:796–802

    Article  CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Chen L, Hao Z, Li X, Liu Y (2011) Effects of salinity stress on the photosynthesis of Wolffia arrhiza as probed by the OJIP test. Fresenius Environ Bull 20:432–438

    CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signaling and defense responses. Curr Opin Plant Biol 7:449–455

    Article  CAS  PubMed  Google Scholar 

  • Wulff A, Mohlin M, Sundback K (2007) Intra-specific variation in the response of the cyanobacterium Nodularia spumigena to moderate UV-B radiation. Harmful Algae 6:388–399

    Article  CAS  Google Scholar 

  • Yakes BJ, Handy SM, Kanyuck KM, DeGrasse SL (2015) Improved screening of microcystin genes and toxins in blue-green algal dietary supplements with PCR and a surface plasmon resonance biosensor. Harmful Algae 47:9–16

    Article  CAS  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the project grant sanctioned to AK by the Department of Science and Technology, Govt. of India, New Delhi (SR/SO/PS-49/09). Thanks are due to IIT-BHU for providing facilities for the characterization of MAAs. PKB is grateful to the UGC, New Delhi, for the award of JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeshwar P. Sinha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Z. Miszalski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2017_2540_MOESM1_ESM.docx

Fig. S 1. Micrographs of M. aeruginosa (A) phase contrast, and (B) fluorescence microscopy. Fig. S 2. Effects of UV-B radiation and temperature on (A) percent survival, (B) Chl a, and (C) phycocyanin content in M. aeruginosa. Values are means ± S.D.(n = 3) and asterisks indicate significant differences from 0 h (∗P < 0.05).One-way ANOVA was used according to Duncan’s multiple range test (DMRT) at P≤ 0.05. Fig. S 3. Emission spectra of DCF from M. aeruginosa cells at 0 h and after exposure to temperature and UV-B radiation (1 to 4 h) as measured by spectrofluorometer. The excitation wavelength was 485 nm and emission wavelengths were between 500–600 nm. The control (cells without DCFH) shows the basal level of fluorescence due to autooxidation of DCFH (DOCX 696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babele, P.K., Singh, G., Singh, A. et al. UV-B radiation and temperature stress-induced alterations in metabolic events and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa . Acta Physiol Plant 39, 248 (2017). https://doi.org/10.1007/s11738-017-2540-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2540-4

Keywords

Navigation