Skip to main content
Log in

Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

We have assessed the constitutive total phenolic and flavonoid contents and the antioxidant activity levels in the stems and roots of nine commercial cultivars of carnation grown in Colombia showing differential response to Fusarium oxysporum f. sp. dianthi. In stems, these parameters were not correlated with resistance, but in roots, resistant cultivars exhibited higher levels of flavonoids and antioxidant activity than those found in susceptible cultivars. The activities of enzymes involved in the biosynthesis of these compounds were evaluated in the root level. Differences in the phenylalanine ammonia-lyase enzyme (PAL) activity were not correlated with resistance, but the activities of chalcone synthase (CHS) and chalcone isomerase (CHI) were higher in the roots of disease-resistant cultivars. Likewise, the transcript levels of CHS and CHI were significantly higher in resistant cultivars, as evaluated by real-time RT-PCR. These results suggested that the constitutive levels of flavonoids in the root level are most likely associated with resistance to F. oxysporum f. sp. dianthi. Such differences may be attributed to increased expression of genes in the phenylpropanoid pathway, specifically CHS and CHI, which are the enzymes that have been previously associated with the regulation of flavonoid biosynthesis in other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PAL:

Phenylalanine ammonium lyase

CHS:

Chalcone synthase

CHI:

Chalcone isomerase

PCR:

Polymerase chain reaction

Fod:

Fusarium oxysporum f. sp. dianthi

CoA:

Coenzyme A

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

Trolox:

6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

GAE:

Gallic acid equivalent

CE:

Catequin equivalent

HPLC:

High-performance liquid chromatography

PVPP:

Polyvinylpolypyrrolidone

References

  • Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212

    Article  PubMed  CAS  Google Scholar 

  • Ardila HD, Baquero B, Martinez ST (2007) Induction of phenylalanine ammonia-lyase activity in carnations (Dianthus caryophyllus L) by elicitors of the fungus Fusarium oxysporum f. sp. dianthi strain 2. Rev Col Quim 36(2):151–168

    CAS  Google Scholar 

  • Ardila HD, Martinez ST, Higuera BL (2011) Spatial and temporal regulation of phenylalanine ammonia-lyase in carnations (Dianthus caryophyllus L.) during their interaction with the pathogen Fusarium oxysporum f. sp. dianthi. Rev Col Quim 40(1):7–24

    CAS  Google Scholar 

  • Arfaoui A, El Hedrami A, Mabrouk Y, Sifi B, Boudabous A, El hadrami I, Daayf F, Cherif M (2007) Treatment of chickpea with rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiol Biochem 45:470–479

    Article  PubMed  CAS  Google Scholar 

  • Assis JS, Maldonado R, Muñoz T, Escribano M, Merodio C (2001) Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit. Postharvest Biol Tec 23:33–39

    Article  CAS  Google Scholar 

  • Azzimonti JC (2003) Biostatistics applied to biochemistry and pharmacy. Ed Universitaria de la UNaM, 2nd edn., pp 22.2–22.8

  • Baayen RP, Niemann GP (1989) Correlations between accumulation of diantramides, dianthalexin and unknown compounds, and partial resistance to Fusarium oxysporum f. sp. dianthi in eleven carnation cultivars. J Phytopathol 126:281–292

    Article  CAS  Google Scholar 

  • Baayen RP, Vanderplas CH (1992) Localization liability, latent period and wilting rate in eleven carnation cultivars with partial resistance to Fusarium wilt. Euphytica 59(3):165–174

    Article  Google Scholar 

  • Baayen RP, Sparnaaij LD, Jansen J, Niemann GJ (1991) Inheritance of resistance in carnation against Fusarium oxysporum f. sp. dianthi races 1 and 2, in relation to resistance components. Neth J PL Pathol 97:73–86

    Article  Google Scholar 

  • Baldridge GD, O′Neill NR, Samac DA (1998) Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol Biol 38:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Ballizany WL, Hofmann RW, Jahufer MZZ, Barett BA (2012) Genotype × environment analysis of flavonoid accumulation and morphology in white clover under contrasting field conditions. Field Crop Res 128:156–166

    Article  Google Scholar 

  • Barros L, Baptista P, Ferreira ICFR (2007) Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem Toxicol 45:1731–1737

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yephet Y, Reuven M, Shtienberg D (1997) Complete resistance by carnation cultivars to Fusarium wilt induced by Fusarium oxysporum f. sp. dianthi raza 2. Plant Dis 81(7):777–780

    Article  Google Scholar 

  • Boddu J, Svabek C, Sekhon R, Gevens A, Nicholson R, Jones D, Pedersen J, Gustine D, Chopra S (2004) Expression of a putative flavonoid 3′-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins. Physiol Mol Plant P 65:101–113

    Article  CAS  Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    Article  PubMed  CAS  Google Scholar 

  • Chang PFL, Hsu CC, Lin YH, Chen KS, Huang JW, Liou TD (2008) Histopathology comparison and phenylalanine ammonia lyase (PAL) gene expressions in Fusarium wilt infected watermelons. Aust J Agr Res 59:1146–1155

    Article  CAS  Google Scholar 

  • Claudot AC, Ernst D, Sandermann H, Drouet A (1999) Cloning and characterization of two members of the chalcone synthase gene family from walnut. Plant Physiol Biochem 37(10):721–730

    Article  CAS  Google Scholar 

  • Curir P, Dolci M, Lanzotti V, Taglialatela O (2001) Kaempferide triglycoside: a possible factor of resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi. Phytochemistry 56:717–721

    Article  PubMed  CAS  Google Scholar 

  • Curir P, Dolci M, Dolci P, Lanzotti V, Cooman LD (2003) Fungitoxic phenols from carnation (Dianthus caryophyllus L) effective against Fusarium oxysporum f. sp. dianthi. Phytochem Analysis 14:8–12

    Article  CAS  Google Scholar 

  • Curir P, Dolci M, Galeotti F (2005) A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)—Fusarium oxysporum f. sp. dianthi pathosystem. Plant Pathol 153:65–67

    CAS  Google Scholar 

  • Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Ag 26:343–356

    Article  CAS  Google Scholar 

  • Cushnie T, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Ag 38:99–107

    Article  CAS  Google Scholar 

  • Depicker A, Montagu MV (1997) Post-transcriptional gene silencing in plants. Curr Opin Cell Biol 9(3):373–382

    Article  PubMed  Google Scholar 

  • Dixon RA, Pavia NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Srinivasa MS, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomic perspective. Mol Plant Pathol 3(5):371–390

    Article  PubMed  CAS  Google Scholar 

  • Fico G, Bilia A, Morelli I, Tome F (2000) Flavonoid distribution in Pyracantha coccinea plants at different growth phases. Biochem Syst Ecol 28:673–678

    Article  PubMed  CAS  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008) PKS activities and biosynthesis of cannabinoids and flavonoids in Cannabis sativa L Plants. Plant Cell Physiol 49(12):1767–1782

    Article  PubMed  CAS  Google Scholar 

  • Fofana B, Mcnally D, Labbe C, Boulanger R, Benhamou N, Seguin A, Belanger R (2002) Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with induction of chalcone synthase and chalcone isomerase. Physiol Mol Plant P 61:121–132

    CAS  Google Scholar 

  • Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry 63:15–23

    Article  PubMed  CAS  Google Scholar 

  • Galeotti F, Barile E, Curir P, Dolci M, Lanzotti V (2008a) Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett 1:44–48

    Article  CAS  Google Scholar 

  • Galeotti F, Barile E, Lanzotti V, Dolci M, Curir P (2008b) Quantification of Major Flavonoids in Carnation Tissues (Dianthus caryophyllus) as a Tool for Cultivar Discrimination. Z Naturforsch 63:161–168

    CAS  Google Scholar 

  • Hammerschmidt R (2005) Antioxidants and the regulation of defense. Physiol Mol Plant P 66:211–212

    Article  Google Scholar 

  • Hernandez I, Alegre L, Van Breusegen F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    Article  PubMed  CAS  Google Scholar 

  • Higuera BL, Nesbat-Ebrahim F (1999) Study of vascular root responses as defense mechanisms in carnation resistant or susceptible to Fusarium oxysporum f. sp. dianthi by Transmission Electron Microscopy. Acta Horticulturae 482:101–108

    Google Scholar 

  • Hussain AI, Anwar F, Hussain ST, Przybylski R (2008) Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem 108:986–995

    Article  CAS  Google Scholar 

  • Jia Z, Tang M, Wu J (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  Google Scholar 

  • Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  PubMed  CAS  Google Scholar 

  • Kangatharalingam N, Pierce ML, Bayles MB, Essenberg M (2002) Epidermal anthocyanin production as an indicator of bacterial blight resistance in cotton. Physiol Mol Plant P 61:189–195

    Article  CAS  Google Scholar 

  • Li FX, Jin ZP, Zhao DX, Cheng LQ, Fu CX, Ma F (2006) Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry 67:553–560

    Article  PubMed  CAS  Google Scholar 

  • Lin JT, Liu SC, Tsay G, Yang DJ (2010) Composition of flavonoids and phenolic acids in Glycin tomentella Hayata cultivated in various soils. Food Chem 121(3):659–665

    Article  CAS  Google Scholar 

  • Lorenc-Kukula K, Wrobel-Kwiatkowska M, Starzycki M, Szopa J (2007) Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiol Mol Plant P 70:38–48

    Article  CAS  Google Scholar 

  • Loureiro A, Nicole MR, Várzea V, Moncada P, Bertrand B, Silva MC (2012) Coffee resistance to Colletotrichum kahawae is associated with lignification, accumulation of phenols and cell death at infection sites. Physiol Mol Plant P 77:23–32

    Article  CAS  Google Scholar 

  • Loverine PT, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  CAS  Google Scholar 

  • Lozovaya V, Lygin A, Zernova O, Ulanov A, Li S, Hartman G, Widholm J (2007) Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta 225:665–679

    Article  PubMed  CAS  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096

    Article  PubMed  CAS  Google Scholar 

  • Melero-Vara JM, Lopez-Herrera CJ, Vera-Delgado MD, Prados-Ligero AM, Navas-Becerra JA, Basallote-Ureba MJ (2011) Effects of soil amendment with poultry manure on carnation Fusarium wilt in greenhouses in southwest Spain. Crop Prot 30(8):970–976

    Article  Google Scholar 

  • Mikulič Petkovšek M, Štampar F, Veberič R (2009) Accumulation of phenolic compounds in apple in response to infection by the scab pathogen, Venturia inaequalis. Physiol Mol Plant P 74:60–67

    Article  CAS  Google Scholar 

  • Morkunas I, Naroz D, Nowak W, Samardakiewicz S, Remlein-Starosta D (2011) Cross-talk interactions of sucrose and Fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine. J Plant Physiol 168:424–433

    Article  PubMed  CAS  Google Scholar 

  • Moustafa E, Wong E (1967) Purification and properties of chalcone-flavanone isomerase from soya bean seed. Phytochemistry 6:625–632

    Article  CAS  Google Scholar 

  • Niemann GJ, Van Der Kerk A, Niessen WMA, Versluis K (1991) Free and wall-bound phenolics and other constituents from healthy and fungus-infected carnations Dianthus caryophyllus L. stems. Physiol Mol Plant P 38:417–432

    Article  CAS  Google Scholar 

  • Ouellete GB, Rioux D, Simard M, Baayen RP (2004) Occurrence of paracrystalloids and their particles in resistant and susceptible carnation plants infected with Fusarium oxysporum f. sp. dianthi race 2. Phytoprotection 85:139–151

    Article  Google Scholar 

  • Paparu P, Dubois T, Coyne D, Viljoen A (2007) Defense-related gene expression in susceptible and tolerant bananas (Musa spp.) following inoculation with non-pathogenic Fusarium oxysporum endophytes and challenge with Radopholus similis. Physiol Mol Plant P 71:149–157

    Article  CAS  Google Scholar 

  • Pedras MSC, Chumala PB, Suchy M (2003) Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity. Phytochemistry 64:949–956

    Article  PubMed  CAS  Google Scholar 

  • Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253

    Article  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Bio Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Reuber S, Jende-Strid B, Wray V, Weissenbock G (1997) Accumulation of the chalcone isosalipurposide in primary leaves of barley flavonoid mutants indicates a defective chalcone isomerase. Physiol Plantarum 101:827–832

    Article  CAS  Google Scholar 

  • Ryan KG, Swinny EE, Markham KR, Winefield C (2002) Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sá RA, Argolo ACC, Napolea TH, Gomes FS, Santos NDL, Melo CML, Alburqueque AC, Xavier HS, Coelho LCBB, Bieber LW, Paiva PMG (2009) Antioxidant, Fusarium growth inhibition and Nasutitermes corniger repellent activities of secondary metabolites from Myracrodruon urundeuva heartwood. Int Biodeter Biodegr 63:470–477

    Article  CAS  Google Scholar 

  • Sant D, Cassanova E, Segarra G, Aviles M, Reis M, Trillas MI (2010) Effect of Trichoderma sperellum strain T34 on Fusarium wilt and water usage in carnation grown on compost-based growth medium. Biol Control 53(3):291–296

    Article  Google Scholar 

  • Scijlen EG, Ric de Vos CH, Van tunen AJ, Bovy AG (2004) Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65:2631–2648

    Article  CAS  Google Scholar 

  • Senda M, Masuta C, Ohnishi S, Goto K, Kasai A, Sano T, Hong JS, MacFarlane S (2004) Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell 16:807–818

    Article  PubMed  CAS  Google Scholar 

  • Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l-phenylalanine ammonia-lyase. Phytochemistry 64:153–161

    Article  PubMed  CAS  Google Scholar 

  • Shaw LJ, Morris P, Hooker J (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8(11):1867–1880

    Article  PubMed  CAS  Google Scholar 

  • Simmonds MSJ (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30

    Article  PubMed  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varanini Z, Nannipieri P, Torrent J, Martinoia E, Cesco S (2008) Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biol Biochem 40:1971–1974

    Article  CAS  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • Trillas MI, Cotxarrera L, Casanova E, Cortadellas N (2000) Ultrastructural changes and localization of chitin and callose in compatible and incompatibles interactions between carnation callus and Fusarium oxysporum. Physiol Mol Plant P 56:107–116

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vatic 16:144–158

    CAS  Google Scholar 

  • Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61:107–114

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Wu LS, Si JP, Yuan XQ, Shi XR (2009) Quantitative variation of flavonoids in Houttuynia cordata from different geographic origins in China. Chin J Natural Med 7(1):40–46

    Article  CAS  Google Scholar 

  • Yang R-Y, Tsou SCS, Lee TC, Wu WJ, Hanson PM, Kuo G, Engle LM, Lai PY (2006) Distribution of 127 edible plant species for antioxidant activities by two assays. J Sci Food Agric 86:2395–2403

    Article  CAS  Google Scholar 

  • Yoo KM, Lee CH, Lee H, Moon B, Lee CY (2008) Relative antioxidant and cytoprotective activities of common herbs. Food Chem 106:929–936

    Article  CAS  Google Scholar 

  • Yoshida H, Itoh Y, Ozeki Y, Iwashina T, Yamaguchi M (2004) Variation in chalconaringenin 2-O-glucoside content in the petals of carnations (Dianthus caryophyllus) bearing yellow flowers. Scientia Horticulturae 99:175–186

    Article  CAS  Google Scholar 

  • Zhao H, Fan W, Dong J, Lu J, Chen J, Zhao L, Lin Y, Kong W (2008) Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem 107:296–304

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Universidad Nacional de Colombia (Campus Bogotá) and Colciencias (Project 1101-452-21230) for their financial support. Grupo Chia and S.B talee companies (Colombia) by the vegetal material supplied. We thank Dr. Jesús Jorrin Novo (Agroforestry and Plant Biochemistry and Proteomics Research Group, Universidad de Cordoba, España) for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Duban Ardila.

Additional information

Communicated by M. H. Walter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardila, H.D., Martínez, S.T. & Higuera, B.L. Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi . Acta Physiol Plant 35, 1233–1245 (2013). https://doi.org/10.1007/s11738-012-1162-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1162-0

Keywords

Navigation