Skip to main content
Log in

Effects of cement dust on volatile oil constituents and antioxidative metabolism of Aleppo pine (Pinus halepensis) needles

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effects of cement dust on the chemical composition of essential oil, lipid peroxidation and antioxidant enzyme activities of Aleppo pine (P. halepensis) needles were studied. Cement dust resulted in a significant decrease in the yield of essential oil with the effect being more pronounced in the close vicinity of the cement factory. A concomitant decrease in all components of the oil was observed and δ-2-carene, trans-carveol, trans-carvyl acetate, α-terpinyl acetate, β-copaene, (E,E)-α-farnesene, α-calacorene, α-cadinene, spathulenol, humulene oxide II, 8-epi-γ-eudesmol, Ί-muurolol, cubenol and ethyl hexadecanoate have been proposed as biological indicators of cement dust. Moreover, a redirection of the secondary metabolism toward the biosynthesis of monoterpenes has been evidenced. Malondialdehydes (MDA), a decomposition product of polyunsaturated fatty acids, often considered as a suitable biomarker for lipid peroxidation was induced in the needles exposed to cement dust. Similarly, a remarkable induction of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities was noticed. The positive relationships were observed among activities of antioxidant enzymes, and between MDA content and activities of antioxidant enzymes, indicating the cooperative action of these antioxidant enzymes to cope with the oxidative stress induced by cement dust. The results obtained indicate that P. halepensis needles are useful bio-monitors of cement dust pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Akhtar N, Yamaguchi M, Inada H, Hoshino D, Kondo T, Izuta T (2010) Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.). Environ Pollut 158:1763–1767

    Article  PubMed  CAS  Google Scholar 

  • Al-Alawi MM, Mandiwana KL (2007) The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere. J Hazard Mater 148:43–46. doi:10.1016/j.jhazmat.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  • Ali S, Ba P, Zeng F, Cai S, Shamsi IH, Qiu B, Wu F, Zhang G (2011) The ecotoxicological and interactive effects of chromium and aluminium on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance. Environ Exp Bot 70:185–191

    Article  CAS  Google Scholar 

  • Alonso R, Elvira S, Castillo FJ, Gimeno BS (2001) Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell Environ 24:905–916

    Article  CAS  Google Scholar 

  • Baby S, Raj G, Thaha ARM, Dan M (2010) Volatile chemistry of a plant: monosesquiterpenoid pattern in the growth cycle of Curcuma haritha. Flavour Fragr J 25:35–40. doi:10.1002/ffj.1955

    Article  CAS  Google Scholar 

  • Bačić T, Lynch AH, Cutler D (1999) Reactions to cement factory dust contamination by Pinus halepensis needles. Environ Exp Bot 41:155–166

    Article  Google Scholar 

  • Barboni T, Luro F, Chiaramonti N, Desjobert J-M, Muselli A, Costa J (2009) Volatile composition of hybrids Citrus juices by headspace solid-phase micro extraction/gas chromatography/mass spectrometry. Food Chem 116:382–390. doi:10.1016/j.foodchem.2009.02.031

    Article  CAS  Google Scholar 

  • Beyer W, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  PubMed  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidant, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194. doi:10.1093/aob/mcf118

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantity of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Butler CD, Trumble JT (2008) Effects of pollutants on bottom-up and top-down processes in insect–plant interactions. Environ Pollut 156:1–10. doi:10.1016/j.envpol.2007.12.026

    Article  PubMed  CAS  Google Scholar 

  • Bylaitė E, Venskutonis R, Roozen JP, Posthumus MA (2000) Composition of essential oil of costmary [Balsamita major (L.) Desf.] at different growth phases. J Agric Food Chem 48:2409–2414

    Article  PubMed  Google Scholar 

  • Chance B, Maehly C (1955) Assay of catalase and peroxidases. Method Enzymol 2:764–775

    Article  Google Scholar 

  • Cobb FWJR, Zavarin E, Bergot J (1972) Effect of air pollution on the volatile oil from leaves of Pinus ponderosa. Phytochemistry 11:1815–1818

    Article  CAS  Google Scholar 

  • Dewir YH, Chakrabarty D, Ali MB, Hahn EJ, Paek KY (2006) Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ Exp Bot 58:93–99. doi:10.1016/j.envexpbot.2005.06.019

    Article  CAS  Google Scholar 

  • Dvaranauskaitė A, Venskutonis PR, Raynaud C, Talou T, Viškelis P, Sasnauskas A (2009) Variations in the essential oil composition in buds of six blackcurrant (Ribes nigrum L.) cultivars at various development phases. Food Chem 114:671–679

    Article  Google Scholar 

  • Elvira S, Alonso R, Castillo FJ, Gimeno BS (1998) On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure. New Phytol 138:419–432

    Article  CAS  Google Scholar 

  • Erdal S, Demirtas A (2010) Effects of cement flue dust from a cement factory on stress parameters and diversity of aquatic plants. Toxicol Ind Health 26:339–343

    Article  PubMed  CAS  Google Scholar 

  • Farmer AM (1993) The effects of dust on vegetation—a review. Environ Pollut 79:63–75

    Article  PubMed  CAS  Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    Article  PubMed  CAS  Google Scholar 

  • Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environ Pollut 147:467–488. doi:10.1016/j.envpol.2006.08.033

    Article  PubMed  Google Scholar 

  • Heath RI, Paker L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hosni K, Zahed N, Chrif R, Abid I, Medfei W, Kallel M, Ben Brahim N, Sebei H (2010) Composition of peel essential oils from four selected Tunisian Citrus species: evidence for the genotypic influence. Food Chem 123:1098–1104. doi:10.1016/j.foodchem.2010.05.068

    Article  CAS  Google Scholar 

  • Inclán R, Gimeno BS, Dizengremel P, Sanchez M (2005) Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress. Environ Pollut 137:517–524. doi:10.1016/j.envpol.2005.01.037

    Article  PubMed  Google Scholar 

  • Judzentiene A, Stikliene A, Kupcinskiene E (2007) Changes in the essential oil composition in the needles of Scots pine (Pinus sylvestris L.) under anthropogenic stress. Sci World J 7:141–150

    Article  CAS  Google Scholar 

  • Kask R, Ots K, Mandre M, Pikk J (2008) Scots pine (Pinus sylvestris L.) wood properties in an alkaline air pollution environment. Trees 22:815–823

    Article  CAS  Google Scholar 

  • Kozlowski TT (1980) Impacts of air pollution on forest ecosystem. Biosience 30:88–93

    Article  CAS  Google Scholar 

  • Kupcinskiene E, Huttunen S (2005) Long-term evaluation of the needle surface wax condition of Pinus sylvestris around different industries in Lithuania. Environ Pollut 137:610–618. doi:10.1016/j.envpol.2005.01.047

    Article  PubMed  CAS  Google Scholar 

  • Kupcinskiene E, Stikliene A, Judzentiene A (2008) The essential oil qualitative and quantitative composition in the needles of Pinus sylvestris L. growing along industrial transects. Environ Pollut 155:481–491. doi:10.1016/j.envpol.2008.02.001

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166. doi:10.1016/j.tplants.2009.12.006

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Zhu LZ (2009) Reducing plant uptake of PAHs by cationic surfactant-enhanced soil retention. Environ Pollut 6:1794–1799. doi:10.1016/j.envpol.2009.01.028

    Article  Google Scholar 

  • Lukjanova A, Mandre M (2010) Effects of alkalization of the environment on the anatomy of Scots pine (Pinus sylvestris) needles. Water Air Soil Pollut 206:13–22

    Article  CAS  Google Scholar 

  • Mackie A, Boilard S, Walsh ME, Lake CB (2010) Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment. J Hazard Mater 173:283–291. doi:10.1016/j.jhazmat.2009.08.081

    Article  PubMed  CAS  Google Scholar 

  • Mandre M, Klõšeiko J, Ots K, Tuulmets L (1999) Changes in phytomass and nutrient partitioning in young conifers in extreme alkaline growth conditions. Environ Pollut 105:209–220

    Article  CAS  Google Scholar 

  • Mandre M, Kask R, Pikk J, Ots K (2008) Assessment of growth and stemwood quality of Scots pine on territory influenced by alkaline industrial dust. Environ Monit Assess 138:51–63

    Article  PubMed  CAS  Google Scholar 

  • Markkola AM, Tarvainen O, Ahonen-Jonnarth U, Strömmer R (2002) Urban polluted forest soils induce elevated root peroxidase activity in Scots pine (Pinus sylvestris L.) seedlings. Environ Pollut 116:273–278

    Article  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  PubMed  CAS  Google Scholar 

  • Mutlu S, Atici O, Kaya Y (2009) Effect of cement dust on diversity and antioxidant enzyme activities of plants growing around a cement factory. Fresenius Environ Bull 18:1823–1827

    CAS  Google Scholar 

  • Nanos GD, Ilias IF (2007) Effects of inert dust on olive (Olea europaea L.) leaf physiological parameters. Environ Sci Pollut Res 17:212–214

    Article  Google Scholar 

  • Paolini J, Costa J, Bernardini A-F (2005) Analysis of the essential oil from aerial parts of Eupatorium cannabinum subsp. corsicum (L.) by gas chromatography with electron impact and chemical ionization mass spectrometry. J Chromatogr A 1076:170–178

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144. doi:10.1016/j.tplants.2009.12.005

    Article  PubMed  Google Scholar 

  • Pierce GJ (1909) The possible effect of cement dust on plants. Science 30:652–654

    Article  Google Scholar 

  • Räisänen T, Ryyppö A, Kellomäki S (2008a) Effects of elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus sylvestris L.). Atmos Environ 42:4160–4171. doi:10.1016/j.atmosenv.2008.01.023

    Article  Google Scholar 

  • Räisänen T, Ryyppö A, Julkunen-Tiitto R, Kellomäki S (2008b) Effects of elevated CO2 and temperature on secondary compounds in the needles of Scots pine (Pinus sylvestris L.). Trees 22:121–135. doi:10.1007/s00468-007-0175-6

    Article  Google Scholar 

  • RNEE (2001) Rapport National de l’Etat de l’Environnement

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    Article  PubMed  CAS  Google Scholar 

  • Sallas L, Luomala E-M, Utriainen J, Kainulainen P, Holopainen JK (2003) Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiol 23:97–108

    Article  PubMed  CAS  Google Scholar 

  • Scalet M, Federico R, Guido MC, Manes F (1995) Peroxidase activity and polyamine changes in response to ozone and simulated acid rain in Aleppo pine needles. Environ Exp Bot 35:417–425

    Article  CAS  Google Scholar 

  • Scholefield PA, Doick KJ, Herbert BMJ, Hewitt CN, Schnitzler JP, Pinelli P, Loreto F (2004) Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:393–401

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stress: heavy metals induced oxidative stress and protection by mycorrhization. J Exp Bot 372:1351–1365

    Article  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, H2O2 content and differentiation in pine (Pinus sylvestris) roots. Plant Physiol 127:887–892

    Article  PubMed  Google Scholar 

  • Shpak SI, Lamotkin SA, Lamotkin AI (2007) Chemical composition of Pinus sylvestris essential oil from contaminated areas. Chem Nat Compd 43:55–58

    Article  CAS  Google Scholar 

  • Snow MD, Bard RR, Olszyk DM, Minster LM, Hager AN, Tingey DT (2003) Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiol Plant 117:352–358

    Article  PubMed  CAS  Google Scholar 

  • Taylor HJ, Ashmore MR, Bell JNB (1986) Air pollution injury to vegetation. Imperial College Centre for Environmental Technology, London

    Google Scholar 

  • Wannaz ED, Zygadlo JA, Pignata ML (2003) Air pollutants effect on monoterpenes composition and foliar chemical parameters in Schinus areira L. Sci Total Environ 305:177–193

    Article  PubMed  CAS  Google Scholar 

  • Wellburn FAM, Ka-Keung L, Milling PMK, Wellburn AR (1996) Drought and air pollution affect nitrogen cycling and free radical scavenging in Pinus halepensis (Mill.). J Exp Bot 47:1361–1367

    Article  CAS  Google Scholar 

  • Wu CA, Lowry DB, Nutter LI, Willis JH (2010) Natural variation for drought-response traits in the Mimulus guttatus species complex. Oecologia 162:23–33

    Article  PubMed  Google Scholar 

  • Yilmaz S, Zengin M (2004) Monitoring environmental pollution in Erzurum by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ Int 29:1041–1047

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Direction Générale de la Recherche Scientifique (DGRS, Tunisia) and the Centre National de la Recherche Scientifique (CNRS, France), Research Project 11/R 09-11. The authors are grateful to the anonymous reviewer for his helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Hosni.

Additional information

Communicated by J. V. Jorrin-Novo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziri, S., Hosni, K. Effects of cement dust on volatile oil constituents and antioxidative metabolism of Aleppo pine (Pinus halepensis) needles. Acta Physiol Plant 34, 1669–1678 (2012). https://doi.org/10.1007/s11738-012-0962-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-0962-6

Keywords

Navigation