Skip to main content
Log in

Effect of moxibustion on CRF and CRFR1 expressions in hypothalamus of TNBS-induced experimental colitis rats

艾灸对TNBS诱导的实验性结肠炎大鼠下丘脑CRF和CRFR1表达的影响

  • Special Topic for 973 Program
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Objective

To observe the effect of moxibustion on the protein and mRNA expressions of corticotropin-releasing factor (CRF) and corticotropin-releasing factor receptor 1 (CRFR1) in hypothalamus of trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis rats, and to explore the central mechanisms of moxibustion in improving visceral pain and the pain-related emotions in experimental colitis rats.

Methods

Thirty-six Sprague-Dawley (SD) rats were randomly divided into a normal group (NG), a model group (MG), a herb-partitioned moxibustion group (HPMG) and a sham herb-partitioned moxibustion group (SHPMG). Except the NG, rats in the remaining three groups all received TNBS enema to establish experimental colitis models. The HPMG received herb-partitioned moxibustion (HPM) at bilateral Tianshu (ST 25) and Qihai (CV 6) for intervention; for the SHPMG, the herbal cakes and moxa cones were only placed on the acupoints but not ignited; rats in the MG and NG were only fixed in the same way as those in the HPMG but did not receive any treatment. At the end of the intervention, the abdominal withdrawal reflex (AWR) score, the open field test (OFT) score and the elevated plus maze (EPM) score were observed to measure the changes in visceral pain and pain-related emotions of the rats. The enzyme-linked immunosorbent assay (ELISA) was used to examine the expressions of CRF and CRFR1 proteins in hypothalamus; the fluorescence-based quantitative polymerase chain reaction (PCR) was used to detect the expressions of CRF and CRFR1 mRNAs in hypothalamus.

Results

Compared with the NG, the AWR score increased significantly and the OFT and EPM scores dropped significantly in the MG (all P<0.05), and the expressions of hypothalamic CRF and CRFR1 proteins and mRNAs increased significantly (all P<0.01). Compared with the MG and SHPMG, the AWR score dropped significantly and the OFT and EPM scores increased significantly in the HPMG (all P<0.01), and the expressions of hypothalamic CRF and CRFR1 proteins and mRNAs decreased significantly (all P<0.05). There were no significant differences between the MG and the SHPMG (all P>0.05).

Conclusion

HPM can down-regulate the abnormally increased expressions of CRF and CRFR1 proteins and mRNAs in hypothalamus of the TNBS-induced experimental colitis rats, which is plausibly one of its action mechanisms in mitigating visceral pain and the pain-related emotions in the experimental colitis rats.

摘要

目的

观察艾灸对三硝基苯磺酸(TNBS)诱导的实验性结肠炎大鼠下丘脑促肾上腺皮质激素释放因子(CRF)及其受体1(CRFR1)蛋白及mRNA表达的影响, 探讨艾灸改善实验性结肠炎大鼠内脏痛及痛情绪的中枢机制。

方法

将36只Sprague-Dawley (SD)大鼠采用完全随机方法分为正常组、模型组、隔药灸组和假隔药灸组。除正常组外,其余三组大鼠均采用TNBS灌肠制备实验性结肠炎模型。隔药灸组采用双侧天枢、气海穴隔药灸治疗; 假隔药灸组仅在穴位上放置药饼和艾炷, 但不点燃艾炷; 模型组和正常组均不进行治疗, 只做与隔药灸组相同的固定。治疗结束后, 检测各组大鼠腹壁撤回反射(AWR)、旷场实验(OFT)和高架十字迷宫测试(EPM)评分, 观察各组大鼠内脏痛和痛情绪变化; 采用ELISA技术检测各组大鼠下丘脑CRF和CRFR1的蛋白含量; 应用荧光定量PCR技术检测各组大鼠下丘脑CRF和CRFR1 mRNA的表达。

结果

与正常组比较, 模型组大鼠AWR评分显著升高; OFT、EPM评分显著降低(均P<0.05); 下丘脑CRF和CRFR1蛋白及mRNA表达均显著升高(均P<0.01)。与模型组和假隔药灸组比较; 隔药灸组大鼠AWR评分显著降低; OFT、EPM评分显著升高(均P<0.01), 下丘脑CRF和CRFR1蛋白及mRNA表达均显著降低(均P<0.05)。假隔药灸组与模型组比较, 差异均无统计学意义(均P>0.05)。

结论

隔药灸能降低TNBS诱导的实验性结肠炎大鼠下丘脑异常增高的CRF和CRFR1蛋白及mRNA的表达, 该作用可能是其缓解实验性结肠炎大鼠内脏痛及痛情绪的作用机制之一。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He LJ, Zhang JD, An MM, Jiang YY. Gut microbiota and inflammatory bowel disease. Yaoxue Shijian Zazhi, 2015, 33(5): 385–388.

    CAS  Google Scholar 

  2. Wen C, Shao XM, Fang JQ, Fang JF, Du JY. Research progress of the role of PKMζ in anterior cingulate cortex in chronic pain-related emotions. Zhongguo Tengtong Yixue Zazhi, 2017, 23(5): 366–370.

    Google Scholar 

  3. Fu TT, Xu J, Wan YJ, Wang W. The effect of the pain-related aversion on pain and the possible mechanism. Zhongguo Tengtong Yixue Zazhi, 2016, 22(6): 428–435.

    Google Scholar 

  4. Huang Y, Yang YT, Liu XX, Zhao Y, Feng XM, Zhang D, Wu HG, Zhu Y, Huang WY, Ma XP. Effect of herbalpartitioned moxibustion at Tianshu (ST 25) and Qihai (CV 6) on pain-related behavior and emotion in rats with chronic inflammatory visceral pain. J Acupunct Tuina Sci, 2015, 13(1): 1–8.

    Article  Google Scholar 

  5. Huang YP. Clinical application observation of moxibustion in treating ulcerative colitis. Zhongguo Xiandai Yaowu Yingyong, 2015, 9(21): 259–260.

    Google Scholar 

  6. Sun JG, Geng Y, Wu QF, Wang CYL, Yang H, Zhang HJZ, Wang X, Yu SG. Warming moxibustion increases serum levels of interleukin-2 and transforming growth factor beta in ulcerative colitis mice. Shijie Huaren Xiaohua Zazhi, 2015, 23(13): 2058–2063.

    CAS  Google Scholar 

  7. Dong WQ. Clinical Observation of Herb-partitioned Moxibustion for Ulcerative Colitis Due to Spleen-kidney Yang Deficiency. Beijing: Master Thesis of Beijing University of Chinese Medicine, 2014.

    Google Scholar 

  8. Yang L, Wu LY, Dou CZ, Feng H, Liu SM, Guan X, Yao Y, Dai M, Wang JH, Wang XM. Effect of herbs-partition moxibustion on expressions of MyD88 and TRAF6 in colon of UC rats. Zhonghua Zhongyiyao Xuekan, 2013, 31(9): 1864–1866.

    CAS  Google Scholar 

  9. Bao CH, Wu LY, Wu HG, Xu B, Lu Y, Liu HR, Yu SG, Zhao TP, Zhao JM, Zhao BX, Hu L, Chang XR. Study on effect and mechanism of moxibustion inhibit visceral pain of intestinal disease. Zhonghua Zhongyiyao Zazhi, 2014, 29(2): 419–422.

    Google Scholar 

  10. Zhou R, Huang DJ, Yue MX, Xu T, Yang JN, He L, Zeng JW. Research progress of the function of CRF and its relation with Parkinson’s disease. Shenjing Jiepouxue Zazhi, 2017, 33(6): 758–762.

    Google Scholar 

  11. Ding N, Ouyang YX, Xing GG. Study progress of the role of CRF and CRFRs in pain and pain-related negative emotions. Zhongguo Tengtong Yixue Zazhi, 2015, 21(6): 449–453.

    Google Scholar 

  12. Wang H, Spiess J, Wong PT, Zhu YZ. Blockade of CRF1 and CCK2 receptors attenuated the elevated anxiety-like behavior induced by immobilization stress. Pharmacol Biochem Behav, 2011, 98(3): 362–368.

    Article  PubMed  CAS  Google Scholar 

  13. Heinrichs SC, Koob GF. Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther, 2004, 311(2): 427–440.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou QQ, Price DD, Verne GN. Reversal of visceral and somatic hypersensitivity in a subset of hypersensitive rats by intracolonic lidocaine. Pain, 2008, 139(1): 218–224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, 1989, 96(3): 795–803.

    Article  PubMed  CAS  Google Scholar 

  16. Guo Y, Yu SG. Experimental Acupuncture Science. Shanghai: Shanghai Scientific & Technical Publishers, 2009: 151.

    Google Scholar 

  17. Wang HJ, Ji LX. Discussion of localization of rat Shenque (CV 8) point. Zhen Ci Yan Jiu, 2007, 32(5): 312.

    CAS  Google Scholar 

  18. Huang MF, Yu CD. Detection of reliability of placebo control acupuncture and moxibustion methods. Zhongguo Zhen Jiu, 2004, 24(7): 65–67.

    Google Scholar 

  19. Yu Q. Choice of blindness and placebo evaluating the efficacy of acupuncture. Zhongxiyi Jiehe Xinnaoxueguanbing Zazhi, 2003, 1(4): 196–198.

    Google Scholar 

  20. Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology, 2000, 119(5): 1276–1285.

    Article  PubMed  CAS  Google Scholar 

  21. Shin J, Gireesh G, Kim SW, Kim DS, Lee S, Kim YS, Watanabe M, Shin HS. Phospholipase C beta 4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors. J Neurosci, 2009, 29(49): 15375–15385.

    Article  PubMed  CAS  Google Scholar 

  22. Li N, Tang QS, Zhao RZ, Gou SL. The changes in behavior of rats with chronic stress-induced anxiety and behavioral evaluation of the elevated plus-maze test system. Zhonghua Zhongyiyao Xuekan, 2010, 28(4): 711–713.

    Google Scholar 

  23. Han JS. Pain. Beijing: Peking University Medical Press, 2012: 1.

    Google Scholar 

  24. Li F. Study on effect and mechanism of moxibustion therapy in the bowel disease the visceral pain. Zhongyi Linchuang Yanjiu, 2014, 6(21): 113–114.

    Google Scholar 

  25. Li J. Effect of Oxytocin on the Intestinal Sensitivity in Normal and TNBS-induced Colitis Rats and Its Mechanism. Jinan: Doctor Thesis of Shandong University, 2014.

    Google Scholar 

  26. Tao JD. Activation of Estrogen Signaling Contributes to P2X Receptor Sensitization in Chronic Visceral Hyperalgesia in Adult Female Rats Induced by Neonatal Colonic. Suzhou: Master Thesis of Soochow University, 2013.

    Google Scholar 

  27. Tian XL, Wang YF, Chen SL, Mo JZ, Chen WH, Cao ZJ. Intestinal inflammation induces visceral and somatic hypersensitivity. Wei Chang Bing Xue, 2012, 17(7): 399–403.

    Google Scholar 

  28. Chen GL, Wang M, Chen JJ, Jiang ZD, Cui H. Research progress of the mental state of chronic pain patients. Zhongguo Tengtong Yixue Zazhi, 2014, 20(9): 658–660.

    Google Scholar 

  29. Meena CL, Thakur A, Nandekar PP, Sharma SS, Sangamwar AT, Jain R. Synthesis and biology of ring-modified L-histidine containing thyrotropinreleasing hormone (TRH) analogues. Eur J Med Chem, 2016, 111: 72–83.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang L, Cao J, Wang Z, Dong Y, Chen Y. Melatonin modulates monochromatic light-induced GHRH expression in the hypothalamus and GH secretion in chicks. Acta Histochem, 2016, 118(3): 286–292.

    Article  PubMed  CAS  Google Scholar 

  31. Wang YY, Ren XX, Zheng Y, You JN, Jia YP, Liu YC. Effects of electroacupuncture with different frequencies on behavior and 5-HT levels in hypothalamus of CUS rats. Changchun Zhongyiyao Daxue Xuebao, 2018, 34(1): 19–22.

    CAS  Google Scholar 

  32. Shao J. The Mechanism of Ventromedial Hypothalamus Regulating Anxiety. Beijing: University of Chinese Academy of Sciences, 2017.

    Google Scholar 

  33. Yao H. The Mechanism of Acupuncture on C Type Natriuretic Peptide Receptor in Hypothalamus of Anxiety Model Rats. Chengdu: Master Thesis of Chengdu University of Traditional Chinese Medicine, 2016.

    Google Scholar 

  34. Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol, 2004, 44: 525–557.

    Article  PubMed  CAS  Google Scholar 

  35. Gutman DA, Owens MJ, Thrivikraman KV, Nemeroff CB. Persistent anxiolytic affects after chronic administration of the CRF1 receptor antagonist R121919 in rats. Neuropharmacology, 2011, 60(7-8): 1135–1141.

    Article  PubMed  CAS  Google Scholar 

  36. Bethea CL, Lima FB, Centeno ML, Weissheimer KV, Senashova O, Reddy AP, Cameron JL. Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity. J Chem Neuroanat, 2011, 41(4): 200–218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Li CT, Liu Y, Yin SP, Lu CY, Liu DX, Jiang H, Pan F. Long-term effects of early adolescent stress: dysregulation of hypothalamic-pituitary-adrenal axis and central corticotropin releasing factor receptor 1 expression in adult male rats. Behav Brain Res, 2015, 288: 39–49.

    Article  PubMed  CAS  Google Scholar 

  38. Cipriano AC, Gomes KS, Nunes-De-Souza RL. CRF receptor type 1 (but not type 2) located within the amygdala plays a role in the modulation of anxiety in mice exposed to the elevated plus maze. Horm Behav, 2016, 81: 59–67.

    Article  PubMed  CAS  Google Scholar 

  39. Waters RP, Rivalan M, Bangasser DA, Deussing JM, Ising M, Wood SK, Holsboer F, Summers CH. Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci Biobehav Rev, 2015, 58: 63–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China ( 国家自然科学基金项目, No. 81674073, No. 81273843); Excellent Academic Leader Cultivation Project of Shanghai Municipal Commission of Health and Family Planning (上海市卫生计生系统优秀学科带头人培养计划项目, No. 2017BR047); National Basic Research Program of China (973 Program, 国家重点基础研究发展计划项目, No. 2015CB554501); Project of Shanghai Municipal Commission of Health and Family Planning ( 上海市卫生和计划生育委员会课题, No. 201540167).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Zhang  (张丹) or Xiao-peng Ma  (马晓芃).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Zy., Huang, Y., Zhang, J. et al. Effect of moxibustion on CRF and CRFR1 expressions in hypothalamus of TNBS-induced experimental colitis rats. J. Acupunct. Tuina. Sci. 16, 207–215 (2018). https://doi.org/10.1007/s11726-018-1052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-018-1052-0

Keywords

关键词

中图分类号

文献标志码

Navigation