Skip to main content
Log in

Intérêt des outils d’investigation des enzymes métaboliques en pratique clinique

Investigation tools for metabolic enzymes in clinical practice

  • Mise au Point / Update
  • Published:
Douleur et Analgésie

Résumé

La variabilité interindividuelle dans la réponse médicamenteuse est un problème clinique majeur. La polymédication et les polymorphismes génétiques modulant l’activité des enzymes du métabolisme médicamenteux tels que les cytochromes P450 (CYP) sont une source de variabilité dans la réponse médicamenteuse. De nouvelles techniques diagnostiques rendues plus sûres et plus simples à réaliser ont été développées afin de diagnostiquer les variations dans l’activité métabolique des CYP (tests de phénotypage) ou de rechercher des variantes alléliques spécifiques (génotypage). Alors que le génotypage des CYP offre la possibilité de prédire le phénotype en fonction des allèles identifiés pour autant que le lien entre génotype et phénotype soit établi, le phénotypage apporte des informations sur l’activité réelle (in vivo) des CYP et est le reflet d’une combinaison de facteurs génétiques, environnementaux et endogènes. Le génotypage et le phénotypage pourraient ainsi être considérés de manière prospective afin d’identifier la molécule idéale ou la dose adéquate à administrer chez un patient donné, ou de manière rétrospective pour expliquer une réponse médicamenteuse anormale (toxicité ou inefficacité).

Abstract

Interindividual variability in drug response is a major clinical issue. Polymedication and genetic polymorphism modulating the activity of drug metabolism enzymes such as cytochrome P450 (CYP) are a source of variability in the drug response. New diagnostic techniques that are more reliable and simpler to perform have been developed in order to diagnose the variations in metabolic activity of CYP (phenotyping tests) or to assess specific allelic variants (genotyping). While CYP genotyping gives the option to predict the phenotype based on the identified alleles, provided that the link between the genotype and the phenotype is established, phenotyping provides information on true (in vivo) CYP activity and is a reflection of a combination of genetic, environmental and endogenic factors. Thus, genotyping and phenotyping could be considered prospectively in order to identify the ideal molecule or the correct dose to administer to a given patient, or retrospectively to explain an abnormal drug response (toxicity or inefficacy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Balian JD, Sukhova N, Harris JW, et al (1995) The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: a population study. Clin Pharmacol Ther 57:662–669

    Article  CAS  PubMed  Google Scholar 

  2. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3:229–243

    Article  CAS  PubMed  Google Scholar 

  3. Breimer DD, Schellens JH (1990) A “cocktail” strategy to assess in vivo oxidative drug metabolism in humans. Trends Pharmacol Sci 11:223–225

    Article  CAS  PubMed  Google Scholar 

  4. Capon DA, Bochner F, Kerry N, et al (1996) The influence of CYP2D6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans. Clin Pharmacol Ther 60:295–307

    Article  CAS  PubMed  Google Scholar 

  5. Chainuvati S, Nafziger AN, Leeder JS, et al (2003) Combined phenotypic assessment of cytochrome p450 1A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the “Cooperstown 5+1 cocktail”. Clin Pharmacol Ther 74:437–447

    Article  CAS  PubMed  Google Scholar 

  6. Chang M, Tybring G, Dahl ML, et al (1995) Interphenotype differences in disposition and effect on gastrin levels of omeprazole: suitability of omeprazole as a probe for CYP2C19. Br J Clin Pharmacol 39:511–518

    Article  CAS  PubMed  Google Scholar 

  7. Daali Y, Cherkaoui S, Doffey-Lazeyras F, et al (2008) Development and validation of a chemical hydrolysis method for dextromethorphan and dextrophan determination in urine samples: application to the assessment of CYP2D6 activity in fibromyalgia patients. J Chromatogr B Analyt Technol Biomed Life Sci 861:56–63

    Article  CAS  PubMed  Google Scholar 

  8. Daali Y, Samer C, Déglon J, et al (2012) Oral flurbiprofen metabolic ratio assessment using a single-point dried blood spot. Clin Pharmacol Ther 91:489–496

    Article  CAS  PubMed  Google Scholar 

  9. Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17:27–41

    Article  CAS  PubMed  Google Scholar 

  10. de Leon J (2006) AmpliChip CYP450 test: personalized medicine has arrived in psychiatry. Expert Rev Mol Diagn 6:277–286

    Article  PubMed  Google Scholar 

  11. de Leon J, Arranz MJ, Ruano G (2008) Pharmacogenetic testing in psychiatry: a review of features and clinical realities. Clin Lab Med 28:599–617

    Article  PubMed  Google Scholar 

  12. de Leon J, Susce MT, Murray-Carmichael E (2006) The Ampli-Chip CYP450 genotyping test: integrating a new clinical tool. Mol Diagn Ther 10:135–151

    Article  PubMed  Google Scholar 

  13. Déglon J, Thomas A, Mangin P, Staub C (2012) Direct analysis of dried blood spots coupled with mass spectrometry: concepts and biomedical applications. Anal Bioanal Chem 402:2485–2498

    Article  PubMed  Google Scholar 

  14. Desta Z, Zhao X, Shin JG, Flockhart DA (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41:913–958

    Article  CAS  PubMed  Google Scholar 

  15. Eichelbaum M, Ingelman-Sundberg M, Evans WE (2006) Pharmacogenomics and individualized drug therapy. Annu Rev Med 57:119–137

    Article  CAS  PubMed  Google Scholar 

  16. Einarson TR (1993) Drug-related hospital admissions. Ann Pharmacother 27:832–840

    CAS  PubMed  Google Scholar 

  17. EMEA (2010) Guideline on the Investigation of Drug Interactions. 16.03.2012; Available from: http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/05/WC500090112.pdf

    Google Scholar 

  18. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491

    Article  CAS  PubMed  Google Scholar 

  19. Franceschi M, Scarcelli C, Niro V, et al (2008) Prevalence, clinical features and avoidability of adverse drug reactions as cause of admission to a geriatric unit: a prospective study of 1,756 patients. Drug Saf 31:545–556

    Article  PubMed  Google Scholar 

  20. Freedman AN, Sansbury LB, Figg WD, et al (2010) Cancer pharmacogenomics and pharmacoepidemiology: setting a research agenda to accelerate translation. J Natl Cancer Inst 102:1698–1705

    Article  PubMed  Google Scholar 

  21. Frye RF, Matzke GR, Adedoyin A, et al (1997) Validation of the five-drug “Pittsburgh cocktail” approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther 62:365–376

    Article  CAS  PubMed  Google Scholar 

  22. Heller T, Kirchheiner J, Armstrong VW, et al (2006) AmpliChip CYP450 GeneChip: a new gene chip that allows rapid and accurate CYP2D6 genotyping. Ther Drug Monit 28:673–677

    Article  CAS  PubMed  Google Scholar 

  23. Ingelman-Sundberg M, Oscarson M, McLellan RA (1999) Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 20:342–349

    Article  CAS  PubMed  Google Scholar 

  24. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526

    Article  CAS  PubMed  Google Scholar 

  25. Jerdi MC, Daali Y, Oestreicher MK, et al (2004) A simplified analytical method for a phenotyping cocktail of major CYP450 biotransformation routes. J Pharm Biomed Anal 35:1203–1212

    Article  CAS  PubMed  Google Scholar 

  26. Kirchheiner J, Brockmoller J (2005) Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 77:1–16

    Article  CAS  PubMed  Google Scholar 

  27. Kivisto KT, Kroemer HK (1997) Use of probe drugs as predictors of drug metabolism in humans. J Clin Pharmacol 37:40S–48S

    Article  CAS  PubMed  Google Scholar 

  28. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205

    Article  CAS  PubMed  Google Scholar 

  29. Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in vitro and human data. Pharmacogenetics 12:251–263

    Article  CAS  PubMed  Google Scholar 

  30. Lin YS, Lockwood GF, Graham MA, et al (2001) In vivo phenotyping for CYP3A by a single-point determination of midazolam plasma concentration. Pharmacogenetics 11:781–791

    Article  CAS  PubMed  Google Scholar 

  31. Martis S, Peter I, Hulot JS, et al (2013) Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J 13:369–377

    Article  CAS  PubMed  Google Scholar 

  32. McGraw J, Waller D (2012) Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 8:371–382

    Article  CAS  PubMed  Google Scholar 

  33. Meadowcroft AM, Williamson KM, Patterson JH, et al (1999) The effects of fluvastatin, a CYP2C9 inhibitor, on losartan pharmacokinetics in healthy volunteers. J Clin Pharmacol 39:418–424

    Article  CAS  PubMed  Google Scholar 

  34. Moore N, Lecointre D, Noblet C, Mabille M (1998) Frequency and cost of serious adverse drug reactions in a department of general medicine. Br J Clin Pharmacol 45:301–308

    Article  CAS  PubMed  Google Scholar 

  35. Nelson DR (2009) The cytochrome p450 homepage. Hum Genomics 4:59–65

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Ou-Yang DS, Huang SL, Wang W, et al (2000) Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol 49:145–151

    Article  CAS  PubMed  Google Scholar 

  37. Rebsamen MC, Desmeules J, Daali Y, et al (2009) The Ampli-Chip CYP450 test: cytochrome P450 2D6 genotype assessment and phenotype prediction. Pharmacogenomics J 9:34–41

    Article  CAS  PubMed  Google Scholar 

  38. Rettie AE, Wienkers LC, Gonzalez FJ, et al (1994) Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 4:39–42

    Article  CAS  PubMed  Google Scholar 

  39. Rollason V, Samer C, Piguet V, et al (2008) Pharmacogenetics of analgesics: toward the individualization of prescription. Pharmacogenomics 9:905–933

    Article  CAS  PubMed  Google Scholar 

  40. Sachse C, Brockmöller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284–295

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Sachse C, Brockmöller J, Bauer S, Roots I (1999) Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47:445–449

    Article  CAS  PubMed  Google Scholar 

  42. Schmid B, Bircher J, Preisig R, Küpfer A (1985) Polymorphic dextromethorphan metabolism: co-segregation of oxidative Odemethylation with debrisoquin hydroxylation. Clin Pharmacol Ther 38:618–624

    Article  CAS  PubMed  Google Scholar 

  43. Scott SA, Sangkuhl K, Gardner EE, et al (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther 90:328–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Singh D, Kashyap A, Pandey RV, Saini KS (2011) Novel advances in cytochrome P450 research. Drug Discov Today 16:793–799

    Article  CAS  PubMed  Google Scholar 

  45. Spigset O, Hägg S, Söderström E, Dahlqvist R (1999) The paraxanthine: caffeine ratio in serum or in saliva as a measure of CYP1A2 activity: when should the sample be obtained? Pharmacogenetics 9:409–412

    Article  CAS  PubMed  Google Scholar 

  46. Spooner N, Lad R, Barfield M (2009) Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: considerations for the validation of a quantitative bioanalytical method. Anal Chem 81:1557–1563

    Article  CAS  PubMed  Google Scholar 

  47. Streetman DS, Bertino JS, Jr., Nafziger AN (2000) Phenotyping of drug-metabolizing enzymes in adults: a review of in vivo cytochrome P450 phenotyping probes. Pharmacogenetics 10:187–216

    Article  CAS  PubMed  Google Scholar 

  48. Streetman DS, Bleakley JF, Kim JS, et al (2000) Combined phenotypic assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the “Cooperstown cocktail”. Clin Pharmacol Ther 68:375–383

    Article  CAS  PubMed  Google Scholar 

  49. Strom CM, Goos D, Crossley B, et al (2012) Testing for variants in CYP2C19: population frequencies and testing experience in a clinical laboratory. Genet Med 14:95–100

    Article  CAS  PubMed  Google Scholar 

  50. Sullivan-Klose TH, Ghanayem BI, Bell DA, et al (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6:341–349

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka E, Kurata N, Yasuhara H (2003) How useful is the “cocktail approach” for evaluating human hepatic drug metabolizing capacity using cytochrome P450 phenotyping probes in vivo? J Clin Pharm Ther 28:157–165

    Article  CAS  PubMed  Google Scholar 

  52. The human cytochrome P450 (CYP) allele nomenclature database. CYP2C19 allele nomenclature. 07.03.2011 08.11.2012]; Available from: http://www.cypalleles.ki.se/cyp2c19.htm

  53. Tybring G, Böttiger Y, Widén J, Bertilsson L (1997) Enantioselective hydroxylation of omeprazole catalyzed by CYP2C19 in Swedish white subjects. Clin Pharmacol Ther 62:129–137

    Article  CAS  PubMed  Google Scholar 

  54. Wandel C, Böcker RH, Böhrer H, et al (1998) Relationship between hepatic cytochrome P450 3A content and activity and the disposition of midazolam administered orally. Drug Metab Dispos 26:110–114

    CAS  PubMed  Google Scholar 

  55. Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352:2211–2221

    Article  CAS  PubMed  Google Scholar 

  56. Xie HG, Prasad HC, Kim RB, Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 54:1257–1270

    Article  CAS  PubMed  Google Scholar 

  57. Zanger UM, Raimundo S, Eichelbaum M (2004) Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 369:23–37

    Article  CAS  PubMed  Google Scholar 

  58. Zhou SF, Liu JP, Chowbay B (2009) Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 41:89–295

    Article  CAS  PubMed  Google Scholar 

  59. Zhu B, Ou-Yang DS, Chen XP, et al (2001) Assessment of cytochrome P450 activity by a five-drug cocktail approach. Clin Pharmacol Ther 70:455–461

    Article  CAS  PubMed  Google Scholar 

Sites internet

  1. http://alfred.med.yale.edu/

  2. http://www.1000genomes.org/

  3. http://www.autogenomics.com/pdf/EM-34036-C-INFINITICYP2C19-Package-Insert.pdf

  4. http://www.cypalleles.ki.se/cyp2c9.htm, accessed on November 16, 2012

  5. http://www.cypalleles.ki.se/cyp2d6.htm

  6. http://www.genmarkdx.com/technology/index.php

  7. http://www.pharmgkb.org/, accessed on November 19, 2012

  8. http://www.sequenom.com/ADME-PGx-Genotyping

  9. http://www.spartanbio.com/products/spartan-rx/

  10. www.ncbi.nlm.nih.gov/SNP/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Samer.

About this article

Cite this article

Samer, C.F., Rollason, V., Lorenzini, K.I. et al. Intérêt des outils d’investigation des enzymes métaboliques en pratique clinique. Douleur analg 26, 241–247 (2013). https://doi.org/10.1007/s11724-013-0354-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11724-013-0354-8

Mots clés

Keywords

Navigation