Skip to main content
Log in

Solving the decentralised gathering problem with a reaction–diffusion–chemotaxis scheme

Social amoebae as a source of inspiration

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

The decentralised gathering problem consists in grouping in a compact cluster agents that are initially randomly scattered. We propose a bio-inspired algorithm, the Reaction–Diffusion–Chemotaxis aggregation scheme, to group agents that have limited abilities. The agents and their environment are described with a stochastic model inspired by the aggregation of the Dictyostelium discoideum cellular slime mold. The environment is an active lattice, whose cells transmit information according to a reaction–diffusion mechanism. The agents are virtual amoebae; they trigger excitations randomly and move by following reaction–diffusion waves. We demonstrate that despite its simplicity, this model exhibits interesting properties of self-organisation and is efficient for gathering agents. Moreover, observations show that the system is robust to various perturbations, such as the presence of obstacles on the lattice or noise in the movements of the agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Thomas, F., Knight, J., Nagpal, R., Rauch, E., Sussman, G. J., & Weiss, R. (2000). Amorphous computing. Communications of ACM (Association for Computing Machinery), 43(5), 74–82.

    Article  Google Scholar 

  • Adamatzky, A. (2001). Computing in nonlinear media and automata collectives. Bristol: Institute of Physics.

    Book  MATH  Google Scholar 

  • Agarwal, P. (1994). Simulation of aggregation in Dictyostelium using the cell programming language. Computer Applications Biosciences, 10(6), 647–655.

    Google Scholar 

  • Ando, H., Oasa, Y., Suzuki, I., & Yamashita, M. (1999). Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation, 15(5), 818–828.

    Article  Google Scholar 

  • Bretschneider, T., Vasiev, B., & Weijer, C. J. (1997). A model for cell movement during Dictyostelium mound formation. Journal of Theoretical Biology, 189(1), 41–51.

    Article  Google Scholar 

  • Chevrier, V., & Fatès, N. (2008). Multi-agent systems as discrete dynamical systems: influences and reactions as a modelling principle (Tech. rep.). INRIA–LORIA, Nancy, France, http://hal.inria.fr/inria-00345954.

  • Christensen, A. L., O’Grady, R., & Dorigo, M. (2008). SWARMORPH-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intelligence, 2(2–4): 143–165.

    Article  Google Scholar 

  • Dallon, J. C., & Othmer, H. G. (1997). A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Philosophical Transactions of the Royal Society B, 352, 391–417.

    Article  Google Scholar 

  • Deutsch, A., & Dormann, S. (2005). Cellular automaton modeling of biological pattern formation characterization, applications, and analysis. Modeling and simulation in science, engineering and technology. Hingham: Kluwer Academic.

    Google Scholar 

  • DeYoung, G., Monk, P. B., & Othmer, H. G. (1988). Pacemakers in aggregation fields of Dictyostelium discoideum: does a single cell suffice? Journal of Mathematical Biology, 26(5), 487–517.

    Article  MATH  MathSciNet  Google Scholar 

  • Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.

    Book  MATH  Google Scholar 

  • Fatès, N. (2009). Asynchronism induces second order phase transitions in elementary cellular automata. Journal of Cellular Automata, 4(1), 21–38.

    MATH  MathSciNet  Google Scholar 

  • Fatès, N., & Berry, H. (2010). Robustness of the critical behaviour in a discrete stochastic reaction-diffusion medium. In Peper, F., et al. (Eds.), Proceedings in information and communications technology: Vol. 2. Proceedings of the IWNC 2009 (pp. 141–148). Berlin: Springer.

    Google Scholar 

  • Fatès, N., & Morvan, M. (2004). Perturbing the topology of the game of life increases its robustness to asynchrony. In Sloot, P. M. A., Chopard, B., & Hoekstra, A. G. (Eds.), LNCS: Vol. 3305. Proceedings of the 6th international conference on cellular automata for research and industry (pp. 111–120). Berlin: Springer.

    Google Scholar 

  • Fatès, N, & Morvan, M. (2005). An experimental study of robustness to asynchronism for elementary cellular automata. Complex Systems, 16, 1–27.

    MathSciNet  Google Scholar 

  • Flocchini, P., Prencipe, G., Santoro, N., & Widmayer, P. (2005). Gathering of asynchronous robots with limited visibility. Theoretical Computer Science, 337(1–3), 147–168.

    Article  MATH  MathSciNet  Google Scholar 

  • Garnier, S., Jost, C., Gautrais, J., Asadpour, M., Caprari, G., Jeanson, R., Grimal, A., & Theraulaz, G. (2008). The embodiment of cockroach aggregation behavior in a group of micro-robots. Artificial Life, 14(4), 387–408.

    Article  Google Scholar 

  • Garnier, S., Gautrais, J., Asadpour, M., Jost, C., & Theraulaz, G. (2009). Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adaptive Behavior, 17(2), 109–133.

    Article  Google Scholar 

  • Geberth, D., & Hütt, M. T. (2008). Predicting spiral wave patterns from cell properties in a model of biological self-organization. Physical Review E, 78(3), 031917.

    Article  MathSciNet  Google Scholar 

  • Geberth, D., & Hütt, M. T. (2009). Predicting the distribution of spiral waves from cell properties in a developmental-path model of Dictyostelium pattern formation. PLoS Computatinal Biology, 5(7), e1000422.

    Article  Google Scholar 

  • Girau, B., Torres-Huitzil, C., Vlassopoulos, N., & Barron-Zambrano, H. (2009, to appear). Reaction–diffusion and chemotaxis for decentralized gathering on FPGAs. International Journal on Reconfigurable Computing.

  • Greenberg, J. M., Hassard, B. D., & Hastings, S. P. (1978). Pattern formation and periodic structures in systems modeled by reaction–diffusion equations. Bulletin of the American Mathematical Society, 84(6), 1296–1327.

    Article  MATH  MathSciNet  Google Scholar 

  • Hillen, T., & Painter, K. J. (2009). A user’s guide to pde models for chemotaxis. Journal of Mathematical Biology, 58, 183–217.

    Article  MATH  MathSciNet  Google Scholar 

  • Hinrichsen, H. (2000). Nonequilibrium critical phenomena and phase transitions into absorbing states. Advances in Physics, 49, 815–958.

    Article  Google Scholar 

  • Kapral, R. (1991). Discrete models for chemically reacting systems. Journal of Mathematical Chemistry, 6(1), 113–163.

    Article  MathSciNet  Google Scholar 

  • Keller, E. F., & Segel, L. A. (1971). Travelling bands of chemotactic bacteria: a theoretical analysis. Journal of Theoretical Biology, 30(2), 235–248.

    Article  Google Scholar 

  • Markus, M., & Hess, B. (1990). Isotropic cellular automaton for modelling excitable media. Nature, 347, 56–58.

    Article  Google Scholar 

  • Nagano, S. (2000). Modeling the model organism Dictyostelium discoideum. Development Growth and Differentiation, 42(6), 541–550.

    Article  Google Scholar 

  • Newman, T. J., & Grima, R. (2004). Many-body theory of chemotactic cell-cell interactions. Physical Review E, 70(5), 051916.

    Article  Google Scholar 

  • Othmer, H. G., & Stevens, A. (1997). Aggregation, blowup, and collapse: the abc’s of taxis in reinforced random walks. SIAM Journal of Applied Mathematics, 57(4), 1044–1081.

    Article  MATH  MathSciNet  Google Scholar 

  • Prencipe, G. (2007). Impossibility of gathering by a set of autonomous mobile robots. Theoretical Computer Science, 384(2–3), 222–231.

    Article  MATH  MathSciNet  Google Scholar 

  • Sepulchre, J. A., & Babloyantz, A. (1991). Propagation of target waves in the presence of obstacles. Physical Review Letters, 66(10), 1314–1317.

    Article  Google Scholar 

  • Sepulchre, J. A., & Babloyantz, A. (1993). Motions of spiral waves in oscillatory media and in the presence of obstacles. Physical Review E, 48(1), 187–195.

    Article  Google Scholar 

  • Simpson, M. J., Merrifield, A., Landman, K. A., & Hughes, B. D. (2007). Simulating invasion with cellular automata: Connecting cell-scale and population-scale properties. Physical Review E, 76(2), 021918.

    Article  Google Scholar 

  • Smith, A. R. (1971). Two-dimensional formal languages and pattern recognition by cellular automata. In Proceedings of the annual IEEE symposium on foundations of computer science (pp. 144–152). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Spicher, A., Fatès, N., & Simonin, O. (2010). Translating discrete multi-agents systems into cellular automata: application to diffusion-limited aggregation. In Filipe, J., Fred, A., & Sharp, B. (Eds.), CCIS: Vol. 67. Proceedings of ICAART’09—revised selected papers (pp. 270–282). Berlin: Springer. http://www.springer.com/computer/artificial/book/978-3-642-11818-0.

    Google Scholar 

  • Sugihara, K., & Suzuki, I. (1990). Distributed motion coordination of multiple mobile robots. In Proceedings of 5th IEEE international symposium on intelligent control (pp. 138–143).

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B, 237, 37–72.

    Article  Google Scholar 

  • Vasieva, O. O., Vasiev, B. N., Karpov, V. A., & Zaikin, A. (1994). A model of Dictyostelium discoideum aggregation. Journal of Theoretical Biology, 171(4), 361–367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazim Fatès.

Additional information

Research supported by the ARC AMYBIA grant by the INRIA institute.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(ZIP 10.4 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatès, N. Solving the decentralised gathering problem with a reaction–diffusion–chemotaxis scheme. Swarm Intell 4, 91–115 (2010). https://doi.org/10.1007/s11721-010-0038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-010-0038-4

Keywords

Navigation