Skip to main content
Log in

Hydromechanical model for hydraulic fractures using XFEM

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

In this study, a hydromechanical model for fluid flow in fractured porous media is presented. We assume viscous fluids and the coupling equations are derived from the mass and momentum balance equations for saturated porous media. The fluid flow through discrete cracks will be modelled by the extended finite element method and an implicit time integration scheme. We also present a consistent linearization of the underlying non-linear discrete equations. They are solved by the Newton-Raphson iteration procedure in combination with a line search. Furthermore, the model is extended to includes crack propagation. Finally, examples are presented to demonstrate the versatility and efficiency of this two-scale hydromechanical model. The results suggest that the presence of the fracture in a deforming, porous media has great impact on the fluid flow and deformation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bažant Z P. Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics, 1984, 110(4): 518–535

    Article  Google Scholar 

  2. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46: 131–150

    Article  MATH  Google Scholar 

  3. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

    Article  MATH  Google Scholar 

  4. Wang H, Belytschko T. Fluid–structure interaction by the discontinuous-galerkin method for large deforma-tions. International Journal for Numerical Methods in Engineering, 2009, 77(1): 30–49

    Article  MathSciNet  MATH  Google Scholar 

  5. Gerstenberger A, Wall W A. An extended finite element method/lagrange multiplier based approach for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 2008, 197(19‒20): 1699–1714

    Article  MathSciNet  MATH  Google Scholar 

  6. Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 22: 48

    MathSciNet  MATH  Google Scholar 

  7. Réthoré J, Borst R, Abellan M A. A two-scale approach for fluid flow in fractured porous media. International Journal for Numerical Methods in Engineering, 2007, 71(7): 780–800

    Article  MathSciNet  MATH  Google Scholar 

  8. Song J H, Areias P, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893

    Article  MATH  Google Scholar 

  9. Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2004, 193(33‒35): 3523–3540

    Article  MathSciNet  MATH  Google Scholar 

  10. Rabczuk T, Areias P, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

    Article  MathSciNet  MATH  Google Scholar 

  11. Vu-Bac N, Nguyen-Xuan H, Chen L, Lee C K, Zi G, Zhuang X, Liu G R, Rabczuk T. A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. Journal of Applied Mathematics, 2013, 2013: 978026

    Article  MathSciNet  MATH  Google Scholar 

  12. Chau-Dinh T, Zi G, Lee P S, Rabczuk T, Song J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92–93: 242–256

    Article  Google Scholar 

  13. Rabczuk T, Zi G, Gerstenberger A, Wall W A. A new crack tip element for the phantom-node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599

    Article  MATH  Google Scholar 

  14. Sukumar N, Chopp D L, Moës N, Belytschko T. Modeling holes and inclusions by level sets in the extended finite-element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46‒47): 6183–6200

    Article  MathSciNet  MATH  Google Scholar 

  15. Areias P, Rabczuk T, Camanho P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63

    Article  Google Scholar 

  16. Areias P, Dias-da Costa D, Sargado J, Rabczuk T. Element-wise algorithm for modeling ductile fracture with the rousselier yield function. Computational Mechanics, 2013, 52(6): 1429–1443

    Article  MATH  Google Scholar 

  17. Areias P, Rabczuk T, Dias-da Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137

    Article  Google Scholar 

  18. Areias P, Rabczuk T, Camanho P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947

    Article  MATH  Google Scholar 

  19. Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122

    Article  MathSciNet  MATH  Google Scholar 

  20. Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 1999, 44(9): 1267–1282

    Article  MATH  Google Scholar 

  21. Remmers J, de Borst R, Needleman A. A cohesive segments method for the simulation of crack growth. Computational Mechanics, 2003, 31(1‒2): 69–77

    Article  MATH  Google Scholar 

  22. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1–4): 3–47

    Article  MATH  Google Scholar 

  23. Nguyen V P, Rabczuk T, Bordas S, Duflot M. Meshless methods: a review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813

    Article  MathSciNet  MATH  Google Scholar 

  24. Dolbow J, Belytschko T. Numerical integration of the galerkin weak form in meshfree methods. Computational Mechanics, 1999, 23(3): 219–230

    Article  MathSciNet  MATH  Google Scholar 

  25. Belytschko T, Guo Y, Liu W K, Xiao S P. A unified stability analysis of meshless particle methods. International Journal for Numerical Methods in Engineering, 2000, 48(9): 1359–1400

    Article  MathSciNet  MATH  Google Scholar 

  26. Belytschko T, Tabbara M. Dynamic fracture using element-free galerkin methods. International Journal for Numerical Methods in Engineering, 1996, 39(6): 923–938

    Article  MATH  Google Scholar 

  27. Organ D, Fleming M, Terry T, Belytschko T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Computational Mechanics, 1996, 18(3): 225–235

    Article  MATH  Google Scholar 

  28. Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57

    Article  MathSciNet  MATH  Google Scholar 

  29. Rabczuk T, Areias P. A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Computer Modeling in Engineering & Sciences, 2006, 16: 115–130

    Google Scholar 

  30. Zi G, Rabczuk T, Wall W. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382

    Article  MATH  Google Scholar 

  31. Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760

    Article  MATH  Google Scholar 

  32. Liew K M, Zhao X, Ferreira A J M. A review of meshless methods for laminated and functionally graded plates and shells. Composite Structures, 2011, 93(8): 2031–2041

    Article  Google Scholar 

  33. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically nonlinear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758

    Article  Google Scholar 

  34. Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75: 943–960

    Article  Google Scholar 

  35. Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

    Article  MATH  Google Scholar 

  36. Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FEimplementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  37. Areias P, Msekh M, Rabczuk T. Damage and fracture algorithm using the screened poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143

    Article  Google Scholar 

  38. Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  39. Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29‒30): 2777–2799

    Article  MathSciNet  MATH  Google Scholar 

  40. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455

    Article  MATH  Google Scholar 

  41. Silling S A, Epton M, Weckner O, Xu J, Askari E. Peridynamic states and constitutive modeling. Journal of Elasticity, 2007, 88(2): 151–184

    Article  MathSciNet  MATH  Google Scholar 

  42. Munjiza A, Andrews K, White J. Combined single and smeared crack model in combined finite-discrete element analysis. International Journal for Numerical Methods in Engineering, 1999, 44(1): 41–57

    Article  MATH  Google Scholar 

  43. Scholtès L, Donzé F V. Modelling progressive failure in fractured rock masses using a 3D discrete element method. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 18–30

    Article  Google Scholar 

  44. Tan Y, Yang D, Sheng Y. Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline sic. Journal of the European Ceramic Society, 2009, 29(6): 1029–1037

    Article  Google Scholar 

  45. Kulatilake P, Malama B, Wang J. Physical and particle flow modeling of jointed rock block behavior under uniaxial loading. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 641–657

    Article  Google Scholar 

  46. Zeng Q y, Zhou J. Analysis of passive earth pressure due to various wall movement by particle flow code (2D). Rock and Soil Mechanics, 2005, 26: 43–47

    Google Scholar 

  47. Wang C, Tannant D. Rock fracture around a highly stressed tunnel and the impact of a thin tunnel liner for ground control. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 676–683

    Article  Google Scholar 

  48. Jing L, Ma Y, Fang Z. Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(3): 343–355

    Article  Google Scholar 

  49. Shi G H. Discontinuous deformation analysis: a new numerical model for the statics and dynamics of de-formable block structures. Engineering Computations, 1992, 9(2): 157–168

    Article  Google Scholar 

  50. Pearce C, Thavalingam A, Liao Z, Bicanic N. Computational aspects of the discontinuous deformation analysis framework for modelling concrete fracture. Engineering Fracture Mechanics, 2000, 65(2–3): 283–298

    Article  Google Scholar 

  51. Ning Y, Yang J, An X, Ma G. Modelling rock fracturing and blastinduced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework. Computers and Geotechnics, 2011, 38(1): 40–49

    Article  Google Scholar 

  52. Abellan M A, De Borst R. Wave propagation and localisation in a softening two-phase medium. Computer Methods in Applied Mechanics and Engineering, 2006, 195(37–40): 5011–5019

    Article  MathSciNet  MATH  Google Scholar 

  53. Lewis R W, Schrefler B A. The finite element method in the deformation and consolidation of porous media. New York: John Wiley and Sons Inc., 1987

    MATH  Google Scholar 

  54. Hassanizadeh S M, Gray W G. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Advances in Water Resources, 1990, 13(4): 169–186

    Article  Google Scholar 

  55. Darcy H. The public fountains of the city of Dijon: exhibition and application. Victor Dalmont, 1856 (in French)

    Google Scholar 

  56. Bachelor G. An Introduction to Fluid Mechanics. Cambridge University Press, 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B. Hydromechanical model for hydraulic fractures using XFEM. Front. Struct. Civ. Eng. 13, 240–249 (2019). https://doi.org/10.1007/s11709-018-0490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-018-0490-6

Keywords

Navigation