Skip to main content
Log in

Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the fatigue crack growth simulations of three-dimensional linear elastic cracks by XFEM under cyclic thermal load. Both temperature and displacement approximations are extrinsically enriched by Heaviside and crack front enrichment functions. Crack growth is modelled by successive linear extensions, and the end points of these linear extensions are joined by cubic spline segments to obtain a modified crack front. Different crack geometries such as planer, non-planer and arbitrary spline shape cracks are simulated under thermal shock, adiabatic and isothermal loads to reveal the sturdiness and versatility of the XFEM approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mukhopadhyay N K, Maiti S K, Kakodkar A. Effect of modelling of traction and thermal singularities on accuracy of SIFS computation through modified crack closure integral in BEM. Engineering Fracture Mechanics, 1999, 64(2): 141–159

    Article  Google Scholar 

  2. Dai H L, Wang X. Thermo-electro-elastic transient responses in piezoelectric hollow structures. International Journal of Solids and Structures, 2005, 42(3–4): 1151–1171

    Article  MATH  Google Scholar 

  3. Wang T H, Lai Y S. Submodeling analysis for path-dependent thermomechanical problems. Journal of Electronic Packaging, 2005, 127(2): 135–140

    Article  Google Scholar 

  4. Balderrama R, Cisilino A P, Martinez M. Boundary element method analysis of three-dimensional thermoelastic fracture problems using the energy domain integral. Journal of Applied Mechanics, 2006, 73(6): 959–969

    Article  MATH  Google Scholar 

  5. Zhong X C, Lee K Y. A thermal-medium crack model. Mechanics of Materials, 2012, 51: 110–117

    Article  Google Scholar 

  6. Barsoum R S. Triangular quarter-point elements as elastic and perfectly plastic crack tip elements. International Journal for Numerical Methods in Engineering, 1977, 11(1): 85–98

    Article  MATH  MathSciNet  Google Scholar 

  7. Nash Gifford L, Hilton P D. Stress intensity factors by enriched finite elements. Engineering Fracture Mechanics, 1978, 10(3): 485–496

    Article  Google Scholar 

  8. Nikishkov G P, Atluri S N. An equivalent domain integral method for computing crack tip integral parameters in non-elastic, thermomechanical fracture. Engineering Fracture Mechanics, 1987, 26(6): 851–867

    Article  Google Scholar 

  9. Rhee H C, Salama M M. Mixed-mode stress intensity factor solutions of a warped surface flaw by three-dimensional finite element analysis. Engineering Fracture Mechanics, 1987, 28(2): 203–209

    Article  Google Scholar 

  10. Carter B, Chen C S, Chew L P, Chrisochoides N, Gao G R, Heber G, Ingraffea A R, Krause R, Myers C, Nave D, Pingali K, Stodghill P, Vavasis S, Wawrzynek P A. Parallel FEM simulation of crack propagation—challenges, status and perspectives, Parallel and Distributed Processing Lecture Notes in Computer Science, 2000, 1800: 443–449

    Article  Google Scholar 

  11. Prasad N N V, Aliabadi M H, Rooke D P. Incremental crack growth in thermoelastic problems. International Journal of Fracture, 1994, 66(3): 45–50

    Article  Google Scholar 

  12. Prasad N N V, Aliabadi M H, Rooke D P. The dual boundary element method for transient thermoelastic crack problems. International Journal of Solids and Structures, 1996, 33(19): 2695–2718

    Article  MATH  Google Scholar 

  13. Keppas L K, Anifantis N K. BEM prediction of TBC fracture resistance. Engineering against Fracture Proceeding of the 1st Conference, 2009, 551–560

    Chapter  Google Scholar 

  14. Pant M, Singh I V, Mishra B K. Evaluation of mixed mode stress intensity factors for interface cracks using EFGM. Applied Mathematical Modelling, 2011, 35(7): 3443–3459

    Article  MATH  MathSciNet  Google Scholar 

  15. Pathak H, Singh A, Singh I V. Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method. Applied Mathematical Modelling, 2014, 38(13): 3093–3123

    Article  MathSciNet  Google Scholar 

  16. Melenk J, Babuska I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1–4): 289–314

    Article  MATH  MathSciNet  Google Scholar 

  17. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

    Article  MATH  MathSciNet  Google Scholar 

  18. Li S, Liu W K. Meshfree Particle Methods. Springer, ISBN 978-3-540-71471-2, 2004

  19. Moral PD, Doucet A. Particle methods: An introduction with applications. RR-6991, 2009, 46

    Google Scholar 

  20. Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  21. Rabczuk T, Song J H, Belytschko T. Simulations of instability in dynamic fracture by the cracking particles method. Engineering Fracture Mechanics, 2009, 76(6): 730–741

    Article  Google Scholar 

  22. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455

    Article  MATH  Google Scholar 

  23. Xu M, Gracie R, Belytschko T. Multiscale Modeling with Extended Bridging Domain Method. Bridging the Scales in Science and Engineering, Oxford Press, 2009, 1–32

    Google Scholar 

  24. Bhardwaj G, Singh I V, Mishra B K, Bui T Q. Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different load and boundary conditions. Composite Structures, 2015, 126: 347–359

    Article  Google Scholar 

  25. Bhardwaj G, Singh I V, Mishra B K. Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 186–229

    Article  MathSciNet  Google Scholar 

  26. Holl M, Loehnert S, Wriggers P. An adaptive multiscale method for crack propagation and crack coalescence. International Journal for Numerical Methods in Engineering, 2013, 93(1): 23–51

    Article  MathSciNet  Google Scholar 

  27. Yang S W, Budarapu P R, Mahapatra D R, Bordas S P A, Zi G, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96: 382–395

    Article  Google Scholar 

  28. Kumar S, Singh I V, Mishra B K, Rabczuk T. Modeling and simulation of kinked cracks by virtual node XFEM. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1425–1466

    Article  MathSciNet  Google Scholar 

  29. Sukumar N, Möes N, Moran B, Belytschko T. Extended finite element method for three-dimensional crack modeling. International Journal for Numerical Methods in Engineering, 2000, 48: 1549–1570

    Article  MATH  Google Scholar 

  30. Sukumar N, Chopp D L, Moran B. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Engineering Fracture Mechanics, 2003, 70(1): 29–48

    Article  Google Scholar 

  31. Daux C, Möes N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 2000, 48: 1741–1760

    Article  MATH  Google Scholar 

  32. Sukumar N, Chopp D L, Möes N, Belytschko T. Modelling holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46–47): 6183–6200

    Article  MATH  MathSciNet  Google Scholar 

  33. Liu X Y, Xiao Q Z, Karihaloo B L. XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials. International Journal for Numerical Methods in Engineering, 2004, 59(8): 1103–1118

    Article  MATH  Google Scholar 

  34. Ventura G, Budyn E, Belytschko T. Vector level sets for description of propagating cracks in finite elements. International Journal for Numerical Methods in Engineering, 2003, 58(10): 1571–1592

    Article  MATH  Google Scholar 

  35. Möes N, Gravouil A, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets-Part-I: Mechanical model. International Journal for Numerical Methods in Engineering, 2002, 53: 2549–2568

    Article  Google Scholar 

  36. Möes N, Gravouil A, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update. International Journal for Numerical Methods in Engineering, 2002, 53: 2569–2586

    Article  Google Scholar 

  37. Shi J, Chopp D, Lua J, Sukumar N, Belytschko T. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Engineering Fracture Mechanics, 2010, 77(14): 2840–2863

    Article  Google Scholar 

  38. Unger J F, Eckardt S, Könke C. Modelling of cohesive crack growth in concrete structures with the extended finite element. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41–44): 4087–4100

    Article  MATH  Google Scholar 

  39. Asferg J L, Poulsen P N, Nielsen L O. A consistent partly cracked XFEM element for cohesive crack growth. International Journal for Numerical Methods in Engineering, 2007, 72(4): 464–485

    Article  MATH  Google Scholar 

  40. Zhang X D, Bui Q T. A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modelling inn concrete structures. Engineering Computations, 2015, 32(2): 473–497

    Article  Google Scholar 

  41. Chopp D L, Sukumar N. Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. International Journal of Engineering Science, 2003, 41(8): 845–869

    Article  MATH  MathSciNet  Google Scholar 

  42. Giner E, Sukumar N, Denia F D, Fuenmayor F J. Extended finite element method for fretting fatigue crack propagation. International Journal of Solids and Structures, 2008, 45(22–23): 5675–5687

    Article  MATH  Google Scholar 

  43. Singh I V, Mishra B K, Bhattacharya S, Patil R U. The numerical simulation of fatigue crack growth using extended finite element method. International Journal of Fatigue, 2012, 36(1): 109–119

    Article  Google Scholar 

  44. Bhattacharya S, Singh I V, Mishra B K. Fatigue life estimation of functionally graded materials using XFEM. Engineering with Computers, 2013, 29(4): 427–448

    Article  Google Scholar 

  45. Bhattacharya S, Singh I V, Mishra B K. Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM. International Journal of Fracture, 2013, 183(1): 81–97

    Article  Google Scholar 

  46. Bhattacharya S, Singh I V, Mishra B K, Bui T Q. Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM. Computational Mechanics, 2013, 52(4): 799–814

    Article  MATH  Google Scholar 

  47. Bhattacharya S, Singh I V, Mishra B K. Fatigue life simulation of functionally graded materials under cyclic thermal load using XFEM. International Journal of Mechanical Sciences, 2014, 82: 41–59

    Article  Google Scholar 

  48. Kumar S, Singh I V, Mishra B K. A Homogenized XFEM approach to simulate fatigue crack growth problems. Computers & Structures, 2015b, 150: 1–22

    Article  Google Scholar 

  49. Pathak H, Singh A, Singh I V, Yadav S K. A simple and efficient XFEM approach for 3-D cracks simulations. International Journal of Fracture, 2013, 181(2): 189–208

    Article  Google Scholar 

  50. Bui Q T, Zhang Ch. Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading. Computational Materials Science, 2012, 62: 243–257

    Article  Google Scholar 

  51. Bui Q T, Zhang Ch. Analysis of generalized dynamic intensity factors of cracked magnetoelectrostatic solids by XFEM. Finite Elements in Analysis and Design, 2013, 69: 19–36

    Article  Google Scholar 

  52. Sharma K, Bui Q T, Zhang Ch, Bhargava R R. Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method. Engineering Fracture Mechanics, 2013, 104: 114–139

    Article  Google Scholar 

  53. Liu P, Yu T T, Bui Q T, Zhang Ch. Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM. Computational Materials Science, 2013, 69: 542–558

    Article  Google Scholar 

  54. Liu P, Yu T T, Bui Q T, Zhang Ch, Xu Y P, Lim C W. Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. International Journal of Solids and Structures, 2014, 51(11–12): 2167–2182

    Article  Google Scholar 

  55. Liu P, Bui Q T, Zhu D, Yu T T, Wang J W, Yin S H, Hirose S. Buckling failure analysis of cracked functionally graded plates by a stabilised discrete shear gap extended 3-noded triangular plate element. Composites. Part B, Engineering, 2015, 77: 179–193

    Article  Google Scholar 

  56. Yu T T, Bui Q T, Liu P, Zhang Ch, Hirose S. Interface dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method. International Journal of Solids and Structures, doi: 10.1016/j.ijsolstr.2015.03.037

  57. Pathak H, Singh A, Singh I V. Fatigue crack growth simulations of 3-D problems using XFEM. International Journal of Mechanical Sciences, 2013b, 76: 112–131

    Article  Google Scholar 

  58. Moës N, Dolbow J, Belytchsko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46: 131–150

    Article  MATH  Google Scholar 

  59. Sih G C. On singular character of thermal stress near a crack tip. Journal of Applied Mechanics, 1962, 29(3): 587–589

    Article  MATH  Google Scholar 

  60. Duflot M. The extended finite element method in thermo-elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 2008, 74(5): 827–847

    Article  MATH  MathSciNet  Google Scholar 

  61. Fries T P. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 2008, 75(5): 503–532

    Article  MATH  MathSciNet  Google Scholar 

  62. Mohammadi S. Extended finite element method for fracture analysis of structures. Singapore: Blackwell Publishing, ISBN-978-1-4051-7060-4, 2008

    Book  MATH  Google Scholar 

  63. Singh I V, Mishra B K, Bhattacharya S. XFEM simulation of cracks, holes and inclusions in functionally graded materials. International Journal of Mechanics and Materials in Design, 2011, 7(3): 199–218

    Article  Google Scholar 

  64. Moran B, Shih C. A general treatment of crack tip contour integrals. International Journal of Fracture, 1987, 35(4): 295–310

    Article  Google Scholar 

  65. Banks-Sills L, Dolev O. The conservative M-integral for thermoelastic problems. International Journal of Fracture, 2004, 125(1): 149–170

    Article  MATH  Google Scholar 

  66. Erdogan F, Sih G. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 1963, 85(4): 519–527

    Article  Google Scholar 

  67. Das B R. Thermal stresses in a long cylinder containing a penny shaped crack. International Journal of Engineering Science, 1968, 6(9): 497–516

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, H., Singh, A., Singh, I.V. et al. Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM. Front. Struct. Civ. Eng. 9, 359–382 (2015). https://doi.org/10.1007/s11709-015-0304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-015-0304-z

Keywords

Navigation