Skip to main content
Log in

Two-scale modeling of granular materials: A FEM-FEM approach

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

In the present paper, a homogenization-based two-scale FEM-FEM model is developed to simulate compactions of visco-plastic granular assemblies. The granular structure consisting of two-dimensional grains is modeled by the microscopic finite element method at the small-scale level, and the homogenized viscous assembly is analyzed by the macroscopic finite element method at large-scale level. The link between scales is made using a computational homogenization method. The two-scale FEM-FEM model is developed in which each particle is treated individually with the appropriate constitutive relations obtained from a representative volume element, kinematic conditions, contact constraints, and elimination of overlap satisfied for every particle. The method could be used in a variety of problems that can be represented using granular media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caglioti E, Loreto V, Herrmann H J, Nicodemi M. A tetris-like model for the compaction of dry granular media. Physical Review Letters, 1997, 79(8): 1575–1578

    Article  Google Scholar 

  2. Ribière P, Philippe P, Richard P, Delannay R, Bideau D. Slow compaction of granular system. Journal of Physics Condensed Matter, 2005, 17(24): 2743–2754

    Article  Google Scholar 

  3. Forgerini F L, Figueiredo W. Random deposition of particles of different sizes. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2009, 79(4): 041602

    Article  Google Scholar 

  4. Cates M E, Wittmer J P, Bouchaud J P, Claudin P. Jamming, force chains, and fragile matter. Physical Review Letters, 1998, 81(9): 1841–1844

    Article  Google Scholar 

  5. Dintwa E, van Zeebroeck M, Tijskens E, Ramon H. Torsional stiffness of viscoelastic spheres in contact. European Physical Journal B, 2004, 39(1): 77–85

    Article  Google Scholar 

  6. Bartels G, Unger T, Kadau D, Wolf D E, Kertesz J. The effect of contact torques on porosity of cohesive powders. Granular Matter, 2005, 7(2–3): 139–143

    Article  MATH  Google Scholar 

  7. Hu W, Jin F, Zhang C, Wang J. 3D mode discrete element method with the elastoplastic model. Frontiers of Structural and Civil Engineering, 2012, 6(1): 57–68

    MATH  Google Scholar 

  8. Lei Yang L, Jiang Y, Li B, Li S, Yang Gao Y. Application of the expanded distinct element method for the study of crack growth in rock-like materials under uniaxial compression. Frontiers of Structural and Civil Engineering, 2012, 6(2): 121–131

    Google Scholar 

  9. Ludewig F, Vandewalle N, Dorbolo S. Compaction of granular mixtures. Granular Matter, 2006, 8(2): 87–91

    Article  MATH  Google Scholar 

  10. Uematsu K, Kim J Y, Miyashita M, Uchida N, Saito K. Direct observation of internal structure in spray-dried alumina granules. Journal of the American Ceramic Society, 1990, 73(8): 2555–2557

    Article  Google Scholar 

  11. Uematsu K, Miyashita M, Kim J Y, Kato Z, Uchida N. Effect of forming pressure on the internal structure of alumina green bodies examined with immersion liquid technique. Journal of the American Ceramic Society, 1991, 74(9): 2170–2174

    Article  Google Scholar 

  12. Durán P, Moure C, Jurado J R. Sintering and micro-structural development of ceria-gadolinia dispersed powders. Journal of Materials Science, 1994, 29(7): 1940–1948

    Article  Google Scholar 

  13. Zhang Y, Uchida N, Uematsu K. Direct observation of non-uniform distribution of PVA binder in alumina green body. Journal of Materials Science, 1995, 30(5): 1357–1360

    Article  Google Scholar 

  14. Naito M, Nakahira K, Hotta T, Ito A, Yokoyama T, Kamiya H. Microscopic analysis on the consolidation process of granule beds. Powder Technology, 1998, 95(3): 214–219

    Article  Google Scholar 

  15. Cuitiñoo A M, Alvarez M C Roddy M J, Lordi N G. Experimental characterization of the behavior of granular visco-plastic and viscoelastic solids during compaction. Journal of Materials Science, 2001, 36(22): 5487–5495

    Article  Google Scholar 

  16. Wu Y C, Thompson E G, Heyliger P R. The compaction of aggregates of non-spherical linear viscous particles. Computer Methods in Applied Mechanics and Engineering, 2003, 192(44–46): 4929–4946

    Article  MATH  Google Scholar 

  17. Wu Y C, Thompson E G, Heyliger P R, Yao Z H. The compaction of blended aggregates of non-spherical linear viscous particles. Computer Methods in Applied Mechanics and Engineering, 2004, 193(36–38): 3871–3890

    Article  MATH  Google Scholar 

  18. Wu Y C. Automatic adaptive mesh upgrade schemes of the step-bystep incremental simulation for quasi linear visco-plastic granular materials. Computer Methods in Applied Mechanics and Engineering, 2008, 197(17–18): 1479–1494

    Article  MATH  Google Scholar 

  19. Wu Y, Xiao J, Zhu C. The compaction of time-dependent viscous granular materials considering inertial forces. Acta Mechanica Solida Sinica, 2011, 24(6): 495–505

    Google Scholar 

  20. Hughes T J R, Feijoo G R, Mazzei L, Quincy J B. The variational multi-scale method-a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 1998, 166(1–2): 3–24

    Article  MathSciNet  MATH  Google Scholar 

  21. Wagner G J, Liu W K. Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics, 2003, 190(1): 249–274

    Article  MATH  Google Scholar 

  22. Park H S, Liu W K. An introduction and tutorial on multiple-scale analysis in solids. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17–20): 1733–1772

    Article  MathSciNet  MATH  Google Scholar 

  23. Kadowaki H, Liu WK. Bridging multi-scale method for localization problems. Computer Methods in Applied Mechanics and Engineering, 2004, 193(30–32): 3267–3302

    Article  MATH  Google Scholar 

  24. Guennouni T, Francois D. Constitutive equations for rigid plastic or viscoplastic materials containing voids. Fatigue and Fracture of Engineering Materials and Structures, 1987, 10(5): 399–418

    Article  Google Scholar 

  25. Gărăjeu M, Suquet P. Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles. Journal of the Mechanics and Physics of Solids, 1997, 45(6): 873–902

    Article  MathSciNet  MATH  Google Scholar 

  26. Danas K, Idiart M I, Castaneda P P. A homogenization-based constitutive model for isotropic viscoplastic porous media. International Journal of Solids and Structures, 2008, 45(11–12): 3392–3409

    Article  MATH  Google Scholar 

  27. Miehe C, Dettmar J, Zah D. Homogenization and two-scale simulations of granular materials for different micro-structural constraints. International Journal for Numerical Methods in Engineering, 2010, 83(8–9): 1206–1236

    Article  MATH  Google Scholar 

  28. Nitka M, Combe G, Dascalu C, Desrues J. Two-scale modeling of granular materials: A DEM-FEM approach. Granular Matter, 2011, 13(3): 277–281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ching Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, YZ., Wu, YC. Two-scale modeling of granular materials: A FEM-FEM approach. Front. Struct. Civ. Eng. 7, 304–315 (2013). https://doi.org/10.1007/s11709-013-0213-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-013-0213-y

Keywords

Navigation