Skip to main content
Log in

Behavior of materials for earth and rockfill dams: Perspective from unsaturated soil mechanics

  • Research Article
  • Published:
Frontiers of Architecture and Civil Engineering in China Aims and scope Submit manuscript

Abstract

The basis of the design of earth and rockfill dams is focused on ensuring the stability of the structure under a set of conditions expected to occur during its life. Combined mechanical and hydraulic conditions must be considered since pore pressures develop during construction, after impoundment and in drawdown. Other instability phenomena caused by transient flow and internal erosion must be considered. The prediction of the hydromechanical behavior of traditional and non-traditional materials used in the construction of dams is therefore fundamental. The materials used for dam’s construction cover a wide range from clayey materials to rockfill. In a broad sense they are compacted materials and therefore unsaturated materials. A summary of the current level of knowledge on the behavior of traditional materials used in the construction of dams is presented in the paper. Regular compacted materials (with a significant clay fraction), rockfill and compacted soft rocks are studied with more detail. The latter are non-traditional materials. They are analysed because their use, as well as the use of mixtures of soil and rock, is becoming more necessary for sustainability reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olivella S, Gens A, Carrera J, Alonso E E. Numerical formulation for simulator (CODE_BRIGHT) for coupled analysis of saline media. Engineering Computations, 1996, 13(7): 87–112

    MATH  Google Scholar 

  2. UPC-DLT (2002). CODE_BRIGHT-User’s Guide. Departamento deIngeniería del Terreno, E.T.S. Ingenieros de Caminos, Canales y Puertosde Barcelona, Universidad Politécnica de Cataluña, Spain

    Google Scholar 

  3. Alonso E E, Pinyol N M. Unsaturated soil mechanics in earth and rockfill dam engineering. In: Toll D G, Augarde C E, Gallipoli D, Wheeler S J, eds. Proceedings of the 1st Europe Conference, E-UNSAT 2008, Durham, United Kindom. London: Taylor and Francis, 2008, 3–32

    Google Scholar 

  4. Alonso E E, Rojas E, Pinyol N M. Unsaturated soil mechanics. In: Proceedings of XXIV Reunión Nacional de Mecánica de Suelos, Mexico. 2008

  5. Maranha das Neves E, Cardoso R. Structural behavior of embakments built with unsaturated materials — Application to the embankments from A10 Motorway, Arruda dos Vinhos / Carregado. Study for BRISA. Department of Civil Engineering, Institute for Structures and Construction, Report ICIST EP 13/08, Instituto Superior Técnico, 2008

  6. Ng C W W, Pang Y W. Influence of stress state on soilwater characteristic and slope stability. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(2): 157–166

    Google Scholar 

  7. Hoffman C, Tarantino A. Effect of grain size distribution on water retention behavior of well graded coarse material. In: Toll D G, Augarde C E, Gallipoli D, Wheeler S J, eds. Proceedings of the 1st Europe Conference, E-UNSAT 2008, Durham, United Kindom. London: Taylor and Francis, 2008, 291–288

    Google Scholar 

  8. Bardanis M E, Kavvadas M J. Modifying the Barcelona Basic Model to account for the residual void ratio and subsequent decrease of shear strength relative to suction. In: Toll D G, Augarde C E, Gallipoli D, Wheeler S J, eds. Proceedings of the 1st Europe Conference, E-UNSAT 2008, Durham, United Kindom. London: Taylor and Francis, 2008, 589–595

    Google Scholar 

  9. Zhou J. A study of applied pressure on the Soil Water Characteristic Curve. In: Toll D G, Augarde C E, Gallipoli D, Wheeler S J, eds. Proceedings of the 1st Europe Conference, EUNSAT 2008, Durham, United Kindom. London: Taylor and Francis, 2008, 689–693

    Google Scholar 

  10. Delage P. Experimental unsaturated soils mechanics. In: Juca J F T, De Campos T M P, Marino F A M, eds. Proceedings of the 3rd International Conference on Unsaturated Soils, Recife, Brazil. Rotterdam: Balkema, 2002, 3: 973–998

    Google Scholar 

  11. Romero E, Vaunat J. Retention curves of deformable clays. In: Tarantino A, Macuso C, eds. Experimental Evidence and Theoretical Approaches in Unsaturated Soils, Trento, Italy. Rotterdam: Balkema, 2000, 91–106

    Google Scholar 

  12. Rampino C, Mancuso C, Vinale F. Laboratory testing on an unsaturated soil: equipment, procedures and first experimental results. Canadian Geotechnical Journal, 1999, 36(1): 1–12

    Google Scholar 

  13. Vanapalli S K, Fredlund D G, Pufahl D E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till. Géotechnique, 1999, 49(2): 143–159

    Google Scholar 

  14. Ng C W W, Pang Y W. Experimental investigation of soil-water characteristics of a volcanic soil. Canadian Geotechnical Journal, 2000, 37(6): 1252–1264

    Google Scholar 

  15. Romero E. Characterization and thermo-hydro-mechanical behavior of unsaturated boom clay. Dissertation for the Doctoral Degree. Barcelona, Spain: Universitat Politècnica de Catalunya, 1999

    Google Scholar 

  16. Sun D A, Sheng D, Cui H B, Sloan S W. A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils. International Journal for Numerical Analytical Method in Geomechanics, 2007, 31(11): 1257–1279

    Google Scholar 

  17. Huang S, Barbour S L, Fredlund D G. Development and verification of a coefficient of permeability function for a deformable unsaturated soil. Canadian Geotechnical Journal, 1998, 35(3): 411–425

    Google Scholar 

  18. Wheeler S J. Inclusion of specific water volume within an elastoplastic model for unsaturated soil. Canadian Geotechnical Journal, 1996, 33(8): 42–57

    Google Scholar 

  19. Rampino C, Mancuso C, Vinale F. Experimental behavior and modeling of an unsaturated compacted soil. Canadian Geotechnical Journal, 2000, 37(4): 748–763

    Google Scholar 

  20. Barrera M. Estudio experimental del comportamiento hidromecánico de suelos colapsables. Dissertation for the Doctoral Degree. Barcelona, Spain: Universidad Politécnica de Catalunya, 2002

    Google Scholar 

  21. Sharma R S. Mechanical behavior of unsaturated highly expansive clays. Dissertation for the Doctoral Degree. Oxford, UK: University of Oxford, 1998

    Google Scholar 

  22. Sivakumar V. A critical state framework for unsaturated soil. Dissertation for the Doctoral Degree. Sheffield, UK: University of Sheffield, 1993

    Google Scholar 

  23. Kawai K, Kato S, Karube D. The model for water retention curve considering effects of void ratio. In: Rahardjo H, Toll D G, Leong E C, eds. Proceedings of the 1st Asian Conference on Unsaturated Soils, Singapore. Rotterdam: Balkema, 2000, 329–334

    Google Scholar 

  24. Gallipoli D, Gens A, Sharma R, Vaunat J. An elastoplastic model for unsaturated soil incoporating the effects of suction and degree of saturation on mechanical behavior. Géotechnique, 2003, 53(1): 123–135

    Google Scholar 

  25. Nitao J J, Bear J. Potentials and their role in transport in porous media. Water Resources Research, 1996, 32(2): 255–250

    Google Scholar 

  26. Buisson M S R, Wheller S J. Inclusion of hydraulic hysteresis in a new elasto-plastic framework for unsaturated soils. In: Tarantino A, Macuso C, eds. Experimental Evidence and Theoretical Approaches in Unsaturated Soils, Trento, Italy. Rotterdam: Balkema, 2000, 109–119

    Google Scholar 

  27. Topp G C. Soil water hysteresis in silt loam and clay loam soils. Water Resources, 1971, 7(4): 914–920

    Google Scholar 

  28. Gili J A, Alonso E E. Microstructural deformation mechanisms of unsaturated granular soils. International Journal for Numerical Analytical Method in Geomechanics, 2002, 26(5): 433–468

    MATH  Google Scholar 

  29. Skempton A W. Terzaghi’s discovery of effective stress. In: Terzaghi K, ed. From Theory to Practice in Soil Mechanics. New York: John Wiley, 1960

    Google Scholar 

  30. Lade P V, De Boer R. The concept of effective stress for soil, concrete and rock. Géotechnique, 1997, 47(1): 61–78

    Google Scholar 

  31. Jennings J E B. Discussion on M.S. Youssef’s paper, In: Proceedings of the 4th International Conference on Soil Mechanics, ISSMFE. 1957, 3: 168

    Google Scholar 

  32. Croney D, Coleman J D, Black WP M. Movement and distribution of water in soil in relation to highway design and performance. Highway Research Board, Spec. Report No. 40, 1958

  33. Bishop A W. The principle of effective stress. Tecknisk Ukeblad, 1959, 106(39): 859–863

    Google Scholar 

  34. Aitchison G D. Relationships of moisture stress functions in unsaturated soils. In: Conference Pore Pressures, Institution of Civil Engineering. London: Buttherworths, 1960

    Google Scholar 

  35. Jennings J E B, Burland J B. Limitations to the use of effective stress in partly saturated soils. Géotechnique, 1962, 12(2): 125–144

    Google Scholar 

  36. Burland J B. Some aspects of the mechanical behavior of partly saturated soils. In: Aitchison G D, ed. Proceedings of the Conference on Moisture Equilibria and Moisture changes in the Soils Beneath Covered Areas, Australia. London: Butterworths, 1965, 270–278

    Google Scholar 

  37. Fredlund D G, Morgenstern N R. Stress state variables for unsaturated soils. Journal of Geotechnical Engineering Division, ASCE, 1977, 103(GT5): 447–466

    Google Scholar 

  38. Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils. Géotechnique, 1990, 40(3): 405–430

    Google Scholar 

  39. Gens A, Alonso E E. A framework for the behavior of unsaturated expansive clays. Canadian Geotechnical Journal, 1992, 29: 1013–1032

    Google Scholar 

  40. Li X S. Thermodynamics-based constitutive framework for unsaturated soils. 2: A basic triaxial model. Géotechnique, 2007, 57(5): 423–435

    Google Scholar 

  41. Tamagnini R. An extended Cam-clay model for unsaturated soils with hydraulic hysteresis. Géotechnique, 2004, 54(3): 223–228

    Google Scholar 

  42. Öberg A-L, Sällfors G. A rational approach to the determination of the shear strength parameters of unsaturated soils. In: Alonso E, Delage P, eds. Proceedings of the 1st International Conference on Unsaturated Soils, Paris, France. Rotterdam: Balkema, 1995, 1: 151–158

    Google Scholar 

  43. Garven E A, Vanapalli S K. Evaluation of empirical procedures for predicting the shear strength of unsaturated soils. In: Proceedings of the 5th International Congress on Unsaturated Soil Mechanics. Arizona, USA: ASCE, 2006

    Google Scholar 

  44. Houlsby G. The work input to an unsaturated granular material. Géotechnique, 1997, 47(1): 193–196

    Google Scholar 

  45. Gray W G, Schrefler B A. Thermodynamics approach to effective stress in partially saturated porous media. European Journal of Mechanics-A/Solids, 2001, 20(4): 521–538

    MATH  Google Scholar 

  46. Laloui L, Klubertanz G, Vulliet L. Solid-liquid-air coupling in multiphase porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(3): 183–206

    MATH  Google Scholar 

  47. Li X S. Effective stress in unsaturated soil: a microstructural analysis. Géotechnique, 2003, 53(2): 273–277

    Google Scholar 

  48. Coussy O. Poromechanics. Oxford, England: John Wiley & Sons, 2004

    Google Scholar 

  49. Alonso E E, Pereira J-M, Vaunat J, Olivella S. A microstructurallybased effective stress for unsaturated soils. Géotechnique (in press)

  50. Rojas E. An equivalent stress equation for unsaturated soils. Part 1: The equivalent stress equation. International Journal of Geomechanics, ASCE, 2008, 8: 285–290

    Google Scholar 

  51. Haines W B. Studies in the physical properties of soils. II. A note on the cohesion developed by capillary forces in an ideal soil. The Journal of Agricultural Science, 1925, 15: 529–535

    Google Scholar 

  52. Murray E J. An equation of state for unsaturated soils. Canadian Geotechnical Journal, 2002, 39(1): 125–140

    Google Scholar 

  53. Desai C S, Wang Z. Disturbed state model for porous saturated materials. International Journal of Geomechanics, ASCE, 2003, 3(2): 260–265

    Google Scholar 

  54. Bishop AW, Alpan I, Blight G E, Donald I B. Factors controlling the strength of partly saturated cohesive soils. In: Conference on Stength of Cohesive Soils, Boulder, Colorado, USA. Arizona: ASCE, 1960, 503-532

  55. Escario V, Saez J. The shear strength of partially saturated soils. Géotechnique, 1986, 36(3): 453–456

    Google Scholar 

  56. Gan J K M, Fredlund D G. Multistage direct shear testing of unsaturated soils. Geotechnical Testing Journal, 1988, 11(2): 132–138

    Google Scholar 

  57. Toll D G. A framework for unsaturated soil behavior. Géotechnique, 1990, 40(1): 31–44

    Google Scholar 

  58. Fredlund D G, Xing A, Fredlund M D, Barbour S L. The relationship of the unsaturated soil shear strength to the soil water characteristic curve. Canadian Geotechnical Journal, 1995, 33: 440–448

    Google Scholar 

  59. Miao L, Yin Z, Liu S. Empirical function representing the shear strength of unsaturated soils. Geotechnical Testing Journal, 2001, 24(2): 220–223

    Google Scholar 

  60. Toll D G, Ong B H. Critical-state parameters for an unsaturated residual sandy clay. Géotechnique, 2003, 53(1): 93–103

    Google Scholar 

  61. Tarantino A, Tombolato S. Coupling of hydraulic and mechanical behavior in unsaturated compacted clay. Géotechnique, 2005, 55(4): 307–317

    Google Scholar 

  62. Vanapalli S K, Fredlund D G. Comparison of different procedures to predict the shear strength of unsaturated soils uses the soil-water characteristic curve. Geo-Denver 2000, American Society of Civil Engineers, Special Publication, 2000, 99: 195–209

    Google Scholar 

  63. Vaunat J, Romero E, Marchi C, Jommi C. In: Juca J F T, De Campos T M P, Marino F A M, eds. Proceedings of the 3rd International Conference on Unsaturated Soils, Recife, Brazil. Rotterdam: Balkema, 2002, 245–251

    Google Scholar 

  64. Tarantino A. A possible critical state framework for unsaturated compacted soils. Géotechnique, 2007, 57(4): 385–389

    MathSciNet  Google Scholar 

  65. Han K K, Rahardjo H, Broms B B. Effect of hysteresis on the shear stength of a residual soil. In: Alonso E, Delage P, eds. Proceedings of the 1st International Conference on Unsaturated Soils, Paris, France. Rotterdam: Balkema, 1995, 499–504

    Google Scholar 

  66. Boso M. Shear strength behavior of a reconstituted partially saturated clayey silt. Dissertation for the Doctoral Degree. Trento, Italy: Università degli Studi di Trento, 2005

    Google Scholar 

  67. Romero E, Gens A, Lloret A. Water permeability, water retention curve and microstructure of unsaturated compacted Boom clay. Engineering Geology, 1999, 54(1-2):117–127

    Google Scholar 

  68. Sridharan A, Altschaeffl A G, Diamond S. Pore size distributions studies. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(5): 771–787

    Google Scholar 

  69. Fisher R A. On the capillary forces in an ideal soil; correction of formulae given by W.B. Haines. The Journal of Agricultural Science, 1926, 16: 492–505

    Google Scholar 

  70. Karube D, Kato S. An ideal unsaturated soil and the Bishop’s soil. In: Proceedings of the 13th International Conference on Soil. Mech. Found. Engng., New Delhi. 1994, 1:43–46

    Google Scholar 

  71. Karube D, Kawai K. The role of pore water in the mechanical behavior of unsaturated soils. Geotechnical and Geological Engineering, 2001, 19: 211–241

    Google Scholar 

  72. Chateau X, Dormieux L. Micromechanics of saturated and unsaturated porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 831–844

    MATH  Google Scholar 

  73. Molenkamp F, Nazemi A H. Interactions between two rough spheres, water bridge and water vapour. Géotechnique, 2003, 53(2): 255–264

    Google Scholar 

  74. Wheeler S J, Sharma R S, Buisson M S R. Coupling hydraulic hysteresis and stress-strain behavior in unsaturated soils. Géotechnique, 2003, 53(1): 41–54

    Google Scholar 

  75. Alonso E E. Exploring the limits of unsaturated soil mechanics: The behavior of coarse granular soil and rockfill. The 11th Buchanan Lecture. University of Texas A&M, 2003

  76. Oldecop L A, Alonso E E. A model for rockfill compressibility. Géotechnique, 2001, 51(2): 127–140

    Google Scholar 

  77. Oldecop L A, Alonso E E. Theoretical investigation of the time-dependent behavior of rockfill. Géotechnique, 2007, 57(3): 289–301

    Google Scholar 

  78. Chávez C, Alonso E E. A constitutive model for crushed granular aggregates which includes suction effects. Soils and Foundations, 2003, 43(4): 215–227

    Google Scholar 

  79. Suriol J, Gens A, Alonso E E. Behavior of compacted soils in suction-controlled oedometer. In: Technical Committee of the 2nd International Conference on Unsaturated Soils, eds. The Proceedings of the 2nd International Conference on Unsaturated Soils, Beijing, China. Netherlands: Springer, 1998, 438–443

    Google Scholar 

  80. Alonso E E, Vaunat J. An appraisal of structure level interactions in expansive soils. In: Ribeiro e Sousa L, Fernandes M M, Vargas E Jr., Azevedo R, eds. Applications of Computational Mechanics in Geotechncial Engineering, Proceedings of the 5th International Workshop, Guimaraes, Portugal. Rotterdam: Balkema, 2001,17–30

    Google Scholar 

  81. Alonso E E. Modeling expansive soil behavior. In: Technical Committee of the 2nd International Conference on Unsaturated Soils, eds. The Proceedings of the 2nd International Conference on Unsaturated Soils, Beijing, China. Netherlands: Springer, 1998, 37–70

    Google Scholar 

  82. Alonso E E, Vaunat J, Gens A. Modeling the mechanical behavior of expansive clays. Engineering Geology, 1999, 54: 173–183

    Google Scholar 

  83. Gens A. Constitutive modeling: application to compacted soils. In: Alonso E, Delage P, eds. Proceedings of the 1st International Conference on Unsaturated Soils, Paris, France. Rotterdam: Balkema, 1995, 1179–1200

    Google Scholar 

  84. Jommi C. Remarks on the constitutive modeling of unsaturated soils. In: Tarantino A, Macuso C, eds. Experimental Evidence and Theoretical Approaches in Unsaturated Soils, Trento, Italy. Rotterdam: Blakema, 2000, 139–154

    Google Scholar 

  85. Gens A, Sánchez M, Sheng D. On constitutive modeling of unsaturated soils. Acta Geotechnica, 2006, 1:137–147

    Google Scholar 

  86. Alonso E E, Gens A, Hight D W. General Report: The behavior of partially saturated soils. In: Hanrahan E T, Orr T L L, Widdis T F, eds. Proceedings of the 9th European Conference on Soil Mechanics and Foundations Engineering, Dublin. London: Taylor and Francis, 1987, 1087–1146

    Google Scholar 

  87. Alonso E E, Josa A Y, Gens A. Modeling the behavior of compacted soils upon wetting, Raul J. Marsal Volume, Soil Mech. Soc. of Mexico (SMMS), México. 1992

  88. Sivakumar, V, Wheeler S J. Influence of compaction procedure on the mechanical behavior of an unsaturated compacted clay. Part 1: Wetting and isotropic compression. Géotechnique, 2000, 50(4): 359–368

    Google Scholar 

  89. Wheeler S, Sivakumar V. An elasto-plastic critical state framework for unsaturated soils. Géotechnique, 1995, 45(1): 35–53

    Google Scholar 

  90. Tarantino A, De Col E. Compaction behavior of clay. Géotechnique, 2008, 58(3): 199–213

    Google Scholar 

  91. Marsal R J, Arellano L R, Guzmán M A, Adame H. El Infernillo: Behavior of dams built in Mexico. Instituto de Ingeniería, UNAM, Mexico, 1976

    Google Scholar 

  92. Naylor D J, Maranha das Neves E, Mattar D, Veiga Pinto A A, Jr. Prediction of construction performance of Beliche Dam. Géotechnique, 1986, 36(3): 359–376

    Google Scholar 

  93. Naylor D J, Maranha das Neves E, Veiga Pinto A A. A backanalysis of Beliche Dam. Géotechnique, 1997, 47(2): 221–233

    Google Scholar 

  94. Soriano A, Sánchez F J. Settlements of railroad high embankments. In: Proceedings of XII European Conference on Soil Mechanics and Geotechnical Engineering, Netherlands. 1999

  95. Justo J L, Durand P. Settlement-time behavior of granular embankments. International Journal for Numerical Analytical Method in Geomechanics, 2000, 24(3): 281–303

    MATH  Google Scholar 

  96. Leroueil S, Hight DW. Behavior and properties of natural soils and soft rocks. In: Hight D W, Leroueil S, Phoon K K, Tan T S, eds. Characterisation and Engineering Properties of Natural Soils, Proceedings of the International Workshop, Singapore. Swets and Zeitlinger, 2003, 29–254

  97. Marsal R J. Large scale testing of rockfill materials. Journal of the Soil Mechanics and Foundation Division, ASCE, 1967, 93(2): 27–43

    Google Scholar 

  98. Charles J A, Watts K S. The influence of confining pressure on the shear strength of compacted rockfill. Géotechnique, 1980, 4(3): 353–398

    Google Scholar 

  99. De Mello V F B. Seventh Rankine Lecture: Reflections on design decisions of practical significance to embankment dams. Géotechnique, 1977, 27(3): 279–356

    Google Scholar 

  100. Hardin B O. Crushing of soil particles. Journal of Geotechnical Engineering, ASCE, 1985, 111(10): 1177–1192

    Google Scholar 

  101. Fumagalli E. Tests on cohesionless materials for rockfill dams. Journal of the Soil Mechanics and Foundations Division, ASCE, 1969, 95(SM1): 313–330

    Google Scholar 

  102. Marachi N D, Chan C K, Seed H B, Duncan J M. Strength and deformation characteristics of rockfill materials. Department of Civil Engineering, Report No. TE-69-5, University of California, 1969

  103. Sowers G F, Williams R C, Wallace T S. Compressibility of broken rock and settlement of rockfills. In: Proceedings of the 6th ICSMFE, 2, Montreal. 1965, 561–565

  104. Terzaghi K. Discussion on salt springs and lower bear riverdams. Transactions of ASCE, 1960, 125(2): 139–148

    Google Scholar 

  105. Veiga Pinto A A. Prediction of the structural behavior of rockfill dams. Dissertation of the Doctoral Degree. Lisbon, Portugal: National Laboratory of Civil Engineering, Portugal, 1983

    Google Scholar 

  106. Fredlund D G, Rahardjo H. Soil Mechanics for Unsaturated Soils. New York: John Wiley & Sons, 1993

    Google Scholar 

  107. Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1):47–65

    Google Scholar 

  108. Charles R J. Static fatigue of glass. Journal of Applied Physics, 1958, 29: 1549–1560

    Google Scholar 

  109. Mesri G, Godlewski P M. Time and stress compressibility interrelationship. Journal of the Geotechnical Engineering Division, 1977, 103(GT5): 417–430

    Google Scholar 

  110. McDowell G R. Micromechanics of creep of granular materials. Géotechnique, 2003, 53(10): 915–916

    Google Scholar 

  111. Chávez C. Estudio del comportamiento triaxial de materiales granulares de tamaño medio; con énfasis en la influencia de la succión. Dissertation for the Doctoral Degree. España: Universidad Politécnica de Cataluña, 2004

    Google Scholar 

  112. Cardoso R. Hydro-mechanical behavior of compacted marls. Dissertation for the Doctoral Degree. Lisbon: Instituto Superior Técnico, Lisbon Technical University, 2009

    Google Scholar 

  113. Cardoso R, Alonso E E. Degradation of compacted marls: a microstructural investigation. Soils and Foundations, 2009, 49(3): 315–327

    Google Scholar 

  114. Alonso E E, Alcoverro J. Swelling and degradation of argillaceous rocks. In: Juca J F T, De Campos T M P, Marino F A M, eds. Proceedings of the 3rd International Conference on Unsaturated Soils, Recif, Brazil. Rotterdam: Balkema, 2002, 37–70

    Google Scholar 

  115. Pinyol N M, Alonso E E, Vaunat J. A constitutive model for soft clayey rocks that includes weathering effects. Géotechnique, 2007, 57(2): 137–151

    Google Scholar 

  116. Burland J B. On the compressibility and shear strength of natural clays. Géotechnique, 1990, 40(3): 329–378

    Google Scholar 

  117. Alonso E E, Gens A. On the mechanical behavior of arid soils. In: Fookes P G, Parry R H, eds. Engineering Characteristics of Arid Soils, Proceedings of the 1st International Symposium, London. Rotterdam: Balkema, 1994, 173–206

    Google Scholar 

  118. van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980, 44(5): 892–898

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo E. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, E.E., Cardoso, R. Behavior of materials for earth and rockfill dams: Perspective from unsaturated soil mechanics. Front. Archit. Civ. Eng. China 4, 1–39 (2010). https://doi.org/10.1007/s11709-010-0013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-010-0013-6

Keywords

Navigation