Skip to main content
Log in

Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The unique feather-like arrays composing of ultrathin secondary nanowires are fabricated on nickel foam (NF) through a facile hydrothermal strategy. Thus, the enhancement of electrochemical properties especially the low charge transfer resistance strongly depends on more active sites and porosity of the morphology. Benefiting from the unique structure, the optimized NiCo2O4 electrode delivers a significantly lower charge transfer resistance of 0.32 Ω and a high specific capacitance of 450 F·g−1 at 0.5 A·g−1, as well as a superior cycling stability of 139.6% capacitance retention. The improvement of the electrochemical energy storage property proves the potential of the fabrication of various binary metal oxide electrodes for applications in the electrochemical energy field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu X H, Yu M H, Wang G M, et al. Flexible solid-state supercapacitors: design, fabrication and applications. Energy & Environmental Science, 2014, 7(7): 2160–2181

    Article  Google Scholar 

  2. Yuan K, Lützenkirchen-Hecht D, Li L, et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. Journal of the American Chemical Society, 2020, 142(5): 2404–2412

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon-electrolyte systems. Accounts of Chemical Research, 2013, 46(5): 1094–1103

    Article  CAS  Google Scholar 

  4. Zou K, Cai P, Liu C, et al. A kinetically well-matched full-carbon sodium-ion capacitor. Journal of Materials Chemistry, 2019, 7(22): 13540–13549

    Article  CAS  Google Scholar 

  5. Yun X, Wu S, Li J, et al. Facile synthesis of crystalline RuSe2 nanoparticles as a novel pseudocapacitive electrode material for supercapacitors. Chemical Communications, 2019, 55(82): 12320–12323

    Article  CAS  Google Scholar 

  6. Luo X, Wang J, Dooner M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 2015, 137: 511–536

    Article  Google Scholar 

  7. Zhang X, Li S, El-Khodary S A, et al. Porous α-Fe2O3 nanoparticles encapsulated within reduced graphene oxide as superior anode for lithium-ion battery. Nanotechnology, 2020, 31(14): 145404

    Article  CAS  Google Scholar 

  8. Wang M Q, Li Z Q, Wang C X, et al. Novel core-shell FeOF/Ni(OH)2 hierarchical nanostructure for all-solid-state flexible supercapacitors with enhanced performance. Advanced Functional Materials, 2017, 27(31): 1701014–1701027

    Article  Google Scholar 

  9. El-Khodary S A, El-Enany G M, El-Okr M, et al. Modified iron doped polyaniline/sulfonated carbon nanotubes for all symmetric solid-state supercapacitor. Synthetic Metals, 2017, 233: 41–51

    Article  CAS  Google Scholar 

  10. Kale S B, Lokhande A C, Pujari R B, et al. Cobalt sulfide thin films for electrocatalytic oxygen evolution reaction and super-capacitor applications. Journal of Colloid and Interface Science, 2018, 532: 491–499

    Article  CAS  Google Scholar 

  11. Vijayan B L, Krishnan S G, Zain N K, et al. Large scale synthesis of binary composite nanowires in the Mn2O3-SnO2 system with improved charge storage capabilities. Chemical Engineering Journal, 2017, 327: 962–972

    Article  CAS  Google Scholar 

  12. Chen Y Y, Wang Y, Shen X P, et al. Cyanide-metal framework derived CoMoO4/Co3O4 hollow porous octahedrons as advanced anodes for high performance lithium ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(3): 1048–1056

    Article  CAS  Google Scholar 

  13. Chen Y Y, Cai R, Yang Y, et al. Cyanometallic frameworks derived hierarchical porous Fe2O3/NiO microflowers with excellent lithium-storage property. Journal of Alloys and Compounds, 2017, 698: 469–475

    Article  CAS  Google Scholar 

  14. Xia X H, Tu J P, Mai Y J, et al. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high super-capacitor capacitance. Journal of Materials Chemistry, 2011, 21(25): 9319–9325

    Article  CAS  Google Scholar 

  15. Zhang G X, Xiao X, Li B, et al. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(18): 8155–8186

    Article  CAS  Google Scholar 

  16. Meher S K, Rao G R. Ultralayered Co3O4 for high-performance supercapacitor applications. The Journal of Physical Chemistry C, 2011, 115(31): 15646–15654

    Article  CAS  Google Scholar 

  17. Wang J P, Zhou H, Zhu M Z, et al. Metal-organic framework derived Co3O4 covered by MoS2 nanosheets forhigh-performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 744: 220–227

    Article  CAS  Google Scholar 

  18. Zhang X J, Shi W H, Zhu J X, et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Research, 2010, 3(9): 643–652

    Article  CAS  Google Scholar 

  19. Cao C Y, Guo W, Cui Z M, et al. Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. Journal of Materials Chemistry, 2011, 21(9): 3204–3209

    Article  CAS  Google Scholar 

  20. Wu Z, Zhu Y, Ji X. NiCo2O4-based materials for electrochemical supercapacitors. Journal of Materials Chemistry, 2014, 2(36): 14759–14772

    Article  CAS  Google Scholar 

  21. Li W, Yang F, Hu Z, et al. Template synthesis of C@NiCo2O4 hollow microsphere as electrode material for supercapacitor. Journal of Alloys and Compounds, 2018, 749: 305–312

    Article  CAS  Google Scholar 

  22. Wang Z, Zhu Z, Zhang C, et al. Facile synthesis of reduced graphene oxide/NiMn2O4 nanorods hybrid materials for highperformance supercapacitors. Electrochimica Acta, 2017, 230: 438–444

    Article  CAS  Google Scholar 

  23. Wei H, Wang J, Yu L, et al. Facile synthesis of NiMn2O4 nanosheetarrays grown on nickel foam as novel electrode materials for high-performance supercapacitors. Ceramics International, 2016, 42(13): 14963–14969

    Article  CAS  Google Scholar 

  24. Wei G, He J, Zhang W, et al. Rational design of Co(II) dominant and oxygen vacancy defective CuCo2O4@CQDs hollow spheres for enhanced overall water splitting and supercapacitor performance. Inorganic Chemistry, 2018, 57(12): 7380–7389

    Article  CAS  Google Scholar 

  25. Huang G Y, Yang Y, Sun H Y, et al. Defective ZnCo2O4 with Zn vacancies: synthesis, property and electrochemical application. Journal of Alloys and Compounds, 2017, 724: 1149–1156

    Article  CAS  Google Scholar 

  26. Qiu K, Lu M, Luo Y, et al. Engineering hierarchical nanotrees with CuCo2O4 trunks and NiO branches for high-performance supercapacitors. Journal of Materials Chemistry, 2017, 5(12): 5820–5828

    Article  CAS  Google Scholar 

  27. Luo Y, Zhang H, Guo D, et al. Porous NiCo2O4-reduced graphene oxide (rGO) composite with superior capacitance retention for supercapacitors. Electrochimica Acta, 2014, 132: 332–337

    Article  CAS  Google Scholar 

  28. Waghmode R B, Torane A P. Hierarchical 3D NiCo2O4, nanoflowers as electrode materials for high performance super-capacitors. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 6133–6139

    CAS  Google Scholar 

  29. Qi X, Zheng W, He G, et al. NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chemical Engineering Journal, 2017, 309: 426–434

    Article  CAS  Google Scholar 

  30. Li L, Peng S, Cheah Y, et al. Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chemistry, 2013, 19(19): 5892–5898

    Article  CAS  Google Scholar 

  31. Wu Z, Zhu Y, Ji X. NiCo2O4-based materials for electrochemical supercapacitors. Journal of Materials Chemistry, 2014, 2(36): 14759–14772

    Article  CAS  Google Scholar 

  32. Lei Y, Wang Y Y, Yang W, et al. Self-assembled hollow urchinlike NiCo2O4 microspheres for aqueous asymmetric supercapacitors. RSC Advances, 2015, 5(10): 7575–7583

    Article  CAS  Google Scholar 

  33. Nguyen T V, Son L T, Thuy V V, et al. Facile synthesis of Mn-doped NiCo2O4 nanoparticles with enhanced electrochemical performance for a battery-type supercapacitor electrode. Dalton Transactions, 2020, 49(20): 6718–6729

    Article  CAS  Google Scholar 

  34. Li Q, Lu C, Chen C, et al. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Storage Materials, 2017, 8: 59–67

    Article  Google Scholar 

  35. Zou K, Cai P, Liu C, et al. A kinetically well-matched full-carbon sodium-ion capacitor. Journal of Materials Chemistry, 2019, 7(22): 13540–13549

    Article  CAS  Google Scholar 

  36. Yang X F, Wang A, Qiao B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748

    Article  CAS  Google Scholar 

  37. Li J, Xiong S, Liu Y, et al. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Applied Materials & Interfaces, 2013, 5(3): 981–988

    Article  CAS  Google Scholar 

  38. Wang H, Gong Y, Li D, et al. NiCo2O4 bricks as anode materials with high lithium storage property. MRS Advances, 2019, 4(33–34): 1861–1868

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21401073), the Science & Technology Nova Program of Jilin Province (20200301051RQ), the Natural Science Foundation of Jilin Province of China (20170101211JC), the Youth Foundation of Jilin Science and Technology (20190104194), and the Science Foundation of Jilin Institute of Chemical Technology (2018019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dandan Han or Yen Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Wei, J., Wang, S. et al. Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance. Front. Mater. Sci. 14, 450–458 (2020). https://doi.org/10.1007/s11706-020-0528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0528-2

Keywords

Navigation