Skip to main content
Log in

Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method

  • Communication
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Nanocrystalline Zn1 − x Cu x O (x = 0, 0.02, 0.04, 0.06, 0.08) samples were synthesized by a novel auto-combustion method using glycine as the fuel material. The structural, optical and magnetic properties of the samples were characterized using XRD, SEM, photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies. The XRD spectra of samples reveal the hexagonal wurtzite structures of ZnO. As the copper content increases, a diffraction peak at 2θ = 39° corresponding to secondary phase of CuO ([111] crystalline face) appears when x ⩽ 6 mol.%. PL spectra of the samples show a strong ultraviolet (UV) emission and defect related visible emissions. Cu-doping in ZnO can effectively adjust the energy level in ZnO, which leads to red shift in the emission peak position in UV region. The EPR spectra of Cu-doped ZnO nanoparticles show a distinct and broad signal at room temperature, suggesting that it may be attributed to the exchange interactions within Cu2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Norris D J, Yao N, Charnock F T, et al. High-quality manganese-doped ZnSe nanocrystals. Nano Letters, 2001, 1(1): 3–7

    Article  CAS  Google Scholar 

  2. Zhang Q X, Yu K, Bai W, et al. Synthesis, optical and field emission properties of three different ZnO nanostructures. Materials Letters, 2007, 61(18): 3890–3892

    Article  CAS  Google Scholar 

  3. Lieber C M. One-dimensional nanostructures: Chemistry, physics & applications. Solid State Communications, 1998, 107(11): 607–616

    Article  CAS  Google Scholar 

  4. Ryu Y, Lee T-S, Lubguban J A, et al. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters, 2006, 88(24): 241108 (3 pages)

    Article  Google Scholar 

  5. Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455–459

    Article  CAS  Google Scholar 

  6. Sima M, Enculescu I, Sima M, et al. ZnO:Mn:Cu nanowires prepared by template method. physica status solidi (b), 2007, 244 (5): 1522–1527

    Article  CAS  Google Scholar 

  7. Wang Y S, Thomas P J, O’Brien P. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. The Journal of Physical Chemistry B, 2006, 110(43): 21412–21415

    Article  CAS  Google Scholar 

  8. Park Y R, Choi S L, Lee J H, et al. Ferromagnetic properties of Ni-doped rutile TiO2 − δ. Journal of the Korean Physical Society, 2007, 50(3): 638–642

    Article  CAS  Google Scholar 

  9. Liu C, Yun F, Morkoç H. Ferromagnetism of ZnO and GaN: A review. Journal of Materials Science: Materials in Electronics, 2005, 16(9): 555–597

    Article  CAS  Google Scholar 

  10. Huang L M, Rosa A L, Ahuja R. Ferromagnetism in Cu-doped ZnO from first-principles theory. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(7): 075206 (6 pages)

    Article  Google Scholar 

  11. Bhargava R N, Chhabra V, Som T, et al. Quantum confined atoms of doped ZnO nanocrystals. physica status solidi (b), 2002, 229(2): 897–901

    Article  CAS  Google Scholar 

  12. Chakraborti D, Ramachandran S, Trichy G, et al. Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu. Journal of Applied Physics, 2007, 101(5): 053918 (7 pages)

    Article  Google Scholar 

  13. Ni Y H, Cao X F, Wu G G, et al. Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method. Nanotechnology, 2007, 18(15): 155603 (4 pages)

    Article  Google Scholar 

  14. Jimenez-Gonzalez A E. Modification of ZnO thin films by Ni, Cu, and Cd doping. Journal of Solid State Chemistry, 1997, 128(2): 176–180

    Article  CAS  Google Scholar 

  15. Lee H-J, Kim B-S, Cho C R, et al. A study of magnetic and optical properties of Cu-doped ZnO. physica status solidi (b), 2004, 241 (7): 1533–1536

    Article  CAS  Google Scholar 

  16. Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32: 751–767

    Article  Google Scholar 

  17. Wang H, Wang H B, Yang F J, et al. Structure and magnetic properties of Zn1 − x CoxO single-crystalline nanorods synthesized by a wet chemical method. Nanotechnology, 2006, 17(17): 4312–4316

    Article  CAS  Google Scholar 

  18. Li C, Fang G, Fu Q, et al. Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. Journal of Crystal Growth, 2006, 292(1): 19–25

    Article  CAS  Google Scholar 

  19. Sun Y, Ndifor-Angwafor N G, Riley D J, et al. Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters, 2006, 431(4-6): 352–357

    Article  CAS  Google Scholar 

  20. Ryu Y R, Zhu S, Budai J D, et al. Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition. Journal of Applied Physics, 2000, 88(1): 201–204

    Article  CAS  Google Scholar 

  21. Chen Y, Hong K, Ko H J, et al. Plasma-assisted molecular-beam epitaxy of ZnO epilayers on atomically flat MgAl2O4(111) substrates. Applied Physics Letters, 2000, 76(2): 245–247

    Article  CAS  Google Scholar 

  22. Wang J, Gao L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Communications, 2004, 132(3–4): 269–271

    Article  CAS  Google Scholar 

  23. Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996, 79(10): 7983–7990

    Article  CAS  Google Scholar 

  24. Korsunska N O, Borkovska L V, Bulakh B M, et al. The influence of defect drift in external electric field on green luminescence of ZnO single crystals. Journal of Luminescence, 2003, 102-103: 733–736

    Article  CAS  Google Scholar 

  25. Monticone S, Tufeu R, Kanaev A V. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. The Journal of Physical Chemistry B, 1998, 102(16): 2854–2862

    Article  CAS  Google Scholar 

  26. Yao B D, Chan Y F, Wang N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied Physics Letters, 2002, 81(4): 757–759

    Article  CAS  Google Scholar 

  27. Xu C X, Sun X W, Zhang X H, et al. Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology, 2004, 15 (7): 856–861

    Article  CAS  Google Scholar 

  28. Vlasenko L. Point defects in ZnO: Electron paramagnetic resonance study. Physica B: Condensed Matter, 2009, 404(23–24): 4774–4778

    Article  CAS  Google Scholar 

  29. Liu W K, Whitaker K M, Smith A L, et al. Room-temperature electron spin dynamics in free-standing ZnO quantum dots. Physical Review Letters, 2007, 98(18): 186804 (4 pages)

    Article  Google Scholar 

  30. Kannappan R, Mahalakshmy R, Rajendiran T M, et al. Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes derived from 3,4-disubstituted phenol. Journal of Chemical Sciences, 2003, 115(1): 1–14

    Article  CAS  Google Scholar 

  31. Viswanatha R, Chakraborty S, Basu S, et al. Blue-emitting copper-doped zinc oxide nanocrystals. The Journal of Physical Chemistry B, 2006, 110(45): 22310–22312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elilarassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elilarassi, R., Chandrasekaran, G. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method. Front. Mater. Sci. 7, 196–201 (2013). https://doi.org/10.1007/s11706-013-0198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-013-0198-4

Keywords

Navigation