Skip to main content
Log in

Segregation of binary particles in gas-solid fluidized bed

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Particle segregation and mixing behavior play a crucial role in industrial processes. This study investigates the saturated jetsam fraction, which indicates the maximum capacity of flotsam to entrain jetsam, in an initially separated binary fluidized bed with particle size differences. According to the value of saturated jetsam fraction, three distinct regimes—segregation, mixing, and an intermediate regime—are identified. Moreover, intriguing relationships between the saturated jetsam fraction and superficial gas velocity are observed, exhibiting monotonic trends in both the segregation and mixing regimes, while a unique volcano-shaped curve in the intermediate regime. Additionally, a comprehensive entrainment model based on two-fluid model elucidates the observed phenomena, emphasizing the significance of mixing behavior in fluidized layer on the saturated jetsam fraction. This work offers potential insights for evaluating segregation in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Burtally N, King P, Swift M R. Spontaneous air-driven separation in vertically vibrated fine granular mixtures. Science, 2002, 295(5561): 1877–1879

    Article  CAS  PubMed  Google Scholar 

  2. Javier Brey J, Moreno F, Garcia-Rojo R, Ruiz-Montero M J. Hydrodynamic maxwell demon in granular systems. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2001, 65(1): 011305

    Article  Google Scholar 

  3. McLaren C P, Kovar T M, Penn A, Müller C R, Boyce C M. Gravitational instabilities in binary granular materials. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(19): 9263–9268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galvin J E, Dahl S R, Hrenya C M. On the role of non-equipartition in the dynamics of rapidly flowing granular mixtures. Journal of Fluid Mechanics, 2005, 528: 207–232

    Article  Google Scholar 

  5. Yu Y, Lu F, Bai H, Wei F, Zhang C. Discovery of asymmetric distribution of fine particles in fluidization using signal deflection reconstruction measurement. Chemical Engineering Science, 2024, 285: 119564

    Article  CAS  Google Scholar 

  6. Jiang Z, Tsuji T, Oshitani J, Washino K, Tanaka T. Reverse to forward density segregation depending on gas inflow velocity in vibrated fluidized beds. Physics of Fluids, 2023, 35(3): 033313

    Article  CAS  Google Scholar 

  7. Di Maio F P, Di Renzo A, Vivacqua V. Extension and validation of the particle segregation model for bubbling gas-fluidized beds of binary mixtures. Chemical Engineering Science, 2013, 97: 139–151

    Article  CAS  Google Scholar 

  8. Yu Y, Lu F, Bai H, Wei F, Zhang C. Effect of fines addition on heat transfer performance in gas-solid fluidized bed: an integrated experimental, simulation, and theoretical study. Chemical Engineering Journal, 2023, 476: 146806

    Article  CAS  Google Scholar 

  9. Du B, Fan L S, Wei F, Warsito W. Gas and solids mixing in a turbulent fluidized bed. AIChE Journal, 2002, 48(9): 1896–1909

    Article  CAS  Google Scholar 

  10. Chen J L P, Keairns D L. Particle segregation in a fluidized bed. Canadian Journal of Chemical Engineering, 1975, 53(4): 395–402

    Article  CAS  Google Scholar 

  11. Duan F, Zhao L, Chen X, Zhou Q. Fluid-particle drag and particle-particle drag in low-reynolds-number bidisperse gas-solid suspensions. Physics of Fluids, 2020, 32(11): 113311

    Article  CAS  Google Scholar 

  12. Mehrabadi M, Tenneti S, Subramaniam S. Importance of the fluid-particle drag model in predicting segregation in bidisperse gas-solid flow. International Journal of Multiphase Flow, 2016, 86: 99–114

    Article  CAS  Google Scholar 

  13. Gray J M N T. Particle segregation in dense granular flows. Annual Review of Fluid Mechanics, 2018, 50(1): 407–433

    Article  Google Scholar 

  14. Kennedy S, Bretton R. Axial dispersion of spheres fluidized with liquids. AIChE Journal, 1966, 12(1): 24–30

    Article  CAS  Google Scholar 

  15. Duan F, Yu Y, Chen X, Zhou Q. Particle-particle drag force in inertial bidisperse gas-particle suspensions. Journal of Fluid Mechanics, 2022, 952: A11

    Article  Google Scholar 

  16. Shi K, He M, Zhang L, Zhao B, Wang J. Critical comparison of polydisperse kinetic theories using bidisperse dem data. Chemical Engineering Science, 2022, 263: 118062

    Article  CAS  Google Scholar 

  17. Hoffmann A, Janssen L, Prins J. Particle segregation in fluidised binary mixtures. Chemical Engineering Science, 1993, 48(9): 1583–1592

    Article  CAS  Google Scholar 

  18. Gibilaro L G, Rowe P N. A model for a segregating gas fluidised bed. Chemical Engineering Science, 1974, 29(6): 1403–1412

    Article  CAS  Google Scholar 

  19. Kunii D, Levenspiel O. Bubbling bed model. Model for flow of gas through a fluidized bed. Industrial & Engineering Chemistry Fundamentals, 1968, 7(3): 446–452

    Article  CAS  Google Scholar 

  20. Fan L T, Chang Y. Mixing of large particles in two-dimensional gas fluidized beds. Canadian Journal of Chemical Engineering, 1979, 57(1): 88–97

    Article  Google Scholar 

  21. Moritomi H, Yamagishi T, Chiba T. Prediction of complete mixing of liquid-fluidized binary solid particles. Chemical Engineering Science, 1986, 41(2): 297–305

    Article  CAS  Google Scholar 

  22. Chew J W, Hrenya C M. Link between bubbling and segregation patterns in gas-fluidized beds with continuous size distributions. AIChE Journal, 2011, 57(11): 3003–3011

    Article  CAS  Google Scholar 

  23. Chew J W, Wolz J R, Hrenya C M. Axial segregation in bubbling gas-fluidized beds with gaussian and lognormal distributions of geldart group B particles. AIChE Journal, 2010, 56(12): 3049–3061

    Article  CAS  Google Scholar 

  24. Geldart D, Baeyens J, Pope D, Van De Wijer P. Segregation in beds of large particles at high velocities. Powder Technology, 1981, 30(2): 195–205

    Article  CAS  Google Scholar 

  25. Formisani B, Girimonte R, Longo T. The fluidization process of binary mixtures of solids: development of the approach based on the fluidization velocity interval. Powder Technology, 2008, 185(2): 97–108

    Article  CAS  Google Scholar 

  26. Olivieri G, Marzocchella A, Salatino P. Segregation of fluidized binary mixtures of granular solids. AIChE Journal, 2004, 50(12): 3095–3106

    Article  CAS  Google Scholar 

  27. Marzocchella A, Salatino P, Di Pastena V, Lirer L. Transient fluidization and segregation of binary mixtures of particles. AIChE Journal, 2000, 46(11): 2175–2182

    Article  CAS  Google Scholar 

  28. Rao A, Curtis J S, Hancock B C, Wassgren C. Classifying the fluidization and segregation behavior of binary mixtures using particle size and density ratios. AIChE Journal, 2011, 57(6): 1446–1458

    Article  CAS  Google Scholar 

  29. Zhang C, Li P, Lei C, Qian W, Wei F. Experimental study of nonuniform bubble growth in deep fluidized beds. Chemical Engineering Science, 2018, 176: 515–523

    Article  CAS  Google Scholar 

  30. Bouillard J X, Gidaspow D. On the origin of bubbles and geldart’s classification. Powder Technology, 1991, 68(1): 13–22

    Article  CAS  Google Scholar 

  31. Taylor G I. The formation of a blast wave by a very intense explosion i: theoretical discussion. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1950, 201(1065): 159–174

    Google Scholar 

  32. Taylor G I. The formation of a blast wave by a very intense explosion. ii. The atomic explosion of 1945. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1950, 201(1065): 175–186

    CAS  Google Scholar 

  33. Avillez M A, Mac Low M M. Mushroom-shaped structures as tracers of buoyant flow in the galactic disk. Astrophysical Journal, 2001, 551(1): L57–L61

    Article  Google Scholar 

  34. Alghamdi Y A, Peng Z, Almutairi Z, Alibrahim H, Al-Alweet F M, Moghtaderi B, Doroodchi E. Assessment of correlations for minimum fluidization velocity of binary mixtures of particles in gas fluidized beds. Powder Technology, 2021, 394: 1231–1239

    Article  CAS  Google Scholar 

  35. Andreux R, Gauthier T, Chaouki J, Simonin O. New description of fluidization regimes. AIChE Journal, 2005, 51(4): 1125–1130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the financial support from the National Natural Science Foundation of China (Grant Nos. 22308187, 22208186, 22278238, and 22238004), the Beijing Nova Program (Grant No. 2022118), the Key Research and Development Program of Inner Mongolia and Ordos, and the Ordos-Tsinghua Innovative & Collaborative Research Program in Carbon Neutrality (Ordos Laboratory). We would also like to express our gratitude to Fan Duan of Xi’an Jiaotong University for his valuable discussions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxi Zhang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Lu, F., He, X. et al. Segregation of binary particles in gas-solid fluidized bed. Front. Chem. Sci. Eng. 18, 68 (2024). https://doi.org/10.1007/s11705-024-2426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2426-0

Keywords

Navigation