Skip to main content
Log in

Insight into the selective separation of CO2 from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials: a first-principles study

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The composition of biomass pyrolysis gas is complex, and the selective separation of its components is crucial for its further utilization. Metal-incorporated nitrogen-doped materials exhibit enormous potential, whereas the relevant adsorption mechanism is still unclear. Herein, 16 metal-incorporated nitrogen-doped carbon materials were designed based on the density functional theory calculation, and the adsorption mechanism of pyrolysis gas components H2, CO, CO2, CH4, and C2H6 was explored. The results indicate that metal-incorporated nitrogen-doped carbon materials generally have better adsorption effects on CO and CO2 than on H2, CH4, and C2H6. Transition metal Mo- and alkaline earth metal Mg- and Ca-incorporated nitrogen-doped carbon materials show the potential to separate CO and CO2. The mixed adsorption results of CO2 and CO further indicate that when the CO2 ratio is significantly higher than that of CO, the saturated adsorption of CO2 will precede that of CO. Overall, the three metal-incorporated nitrogen-doped carbon materials can selectively separate CO2, and the alkaline earth metal Mg-incorporated nitrogen-doped carbon material has the best performance. This study provides theoretical guidance for the design of carbon capture materials and lays the foundation for the efficient utilization of biomass pyrolysis gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hu B, Zhang Z, Xie W, Liu J, Li Y, Zhang W, Fu H, Lu Q. Advances on the fast pyrolysis of biomass for the selective preparation of phenolic compounds. Fuel Processing Technology, 2022, 237: 107465

    Article  CAS  Google Scholar 

  2. Bruckman V J, Pumpanen J. Biochar use in global forests: opportunities and challenges. Developments in Soil Science, 2019, 36: 427–453

    Article  Google Scholar 

  3. Heidari M, Dutta A, Acharya B, Mahmud S. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. Journal of the Energy Institute, 2019, 92(6): 1779–1799

    Article  CAS  Google Scholar 

  4. Vuppaladadiyam A K, Varsha Vuppaladadiyam S S, Sikarwar V S, Ahmad E, Pant K K, S M, Pandey A, Bhattacharya S, Sarmah A, Leu S Y, et al. A critical review on biomass pyrolysis: reaction mechanisms, process modeling and potential challenges. Journal of the Energy Institute, 2023, 108: 101236

    Article  CAS  Google Scholar 

  5. Montazersadgh F, Zhang H, Alkayal A, Buckley B, Kolosz B W, Xu B, Xuan J. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2. Frontiers of Chemical Science and Engineering, 2021, 15(1): 208–219

    Article  CAS  Google Scholar 

  6. Wan S, Wang Y. A review on ex situ catalytic fast pyrolysis of biomass. Frontiers of Chemical Science and Engineering, 2014, 8(3): 280–294

    Article  CAS  Google Scholar 

  7. Nobarzad M J, Tahmasebpoor M, Heidari M, Pevida C. Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1460–1475

    Article  CAS  Google Scholar 

  8. Qie Z, Wang L, Sun F, Xiang H, Wang H, Gao J, Zhao G, Fan X. Tuning porosity of coal-derived activated carbons for CO2 adsorption. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1345–1354

    Article  CAS  Google Scholar 

  9. Mehrvarz E, Ghoreyshi A A, Jahanshahi M. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2 capture enhancement. Frontiers of Chemical Science and Engineering, 2017, 11(2): 252–265

    Article  CAS  Google Scholar 

  10. Bai J, Huang J, Yu Q, Demir M, Akgul E, Altay B N, Hu X, Wang L. Fabrication of coconut shell-derived porous carbons for CO2 adsorption application. Frontiers of Chemical Science and Engineering, 2023, 17(8): 1122–1130

    Article  CAS  Google Scholar 

  11. Wu D, Liu J, Yang Y, Zheng Y. Nitrogen/oxygen Co-doped porous carbon derived from biomass for low-pressure CO2 capture. Industrial & Engineering Chemistry Research, 2020, 59(31): 14055–14063

    Article  CAS  Google Scholar 

  12. Hamyali H, Nosratinia F, Rashidi A, Ardjmand M. Anthracite coal-derived activated carbon as an effectiveness adsorbent for superior gas adsorption and CO2/N2 and CO2/CH4 selectivity: experimental and DFT study. Journal of Environmental Chemical Engineering, 2022, 10(1): 107007

    Article  CAS  Google Scholar 

  13. Mackie I D, DiLabio G A. CO2 adsorption by nitrogen-doped carbon nanotubes predicted by density-functional theory with dispersion-correcting potentials. Physical Chemistry Chemical Physics, 2011, 13(7): 2780–2787

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Huang D, Shao J, Zhang X, Yang H, Zhang S, Chen H. Activation-free synthesis of nitrogen-doped biochar for enhanced adsorption of CO2. Journal of Cleaner Production, 2022, 355: 131642

    Article  CAS  Google Scholar 

  15. Tehrani N H M H, Alivand M S, Maklavany D M, Rashidi A, Samipoorgiri M, Seif A, Yousefian Z. Novel asphaltene-derived nanoporous carbon with N-S-rich micro-mesoporous structure for superior gas adsorption: experimental and DFT study. Chemical Engineering Journal, 2019, 358: 1126–1138

    Article  CAS  Google Scholar 

  16. Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B. B–N@graphene: highly sensitive and selective gas sensor. Journal of Physical Chemistry C, 2015, 119(44): 24827–24836

    Article  CAS  Google Scholar 

  17. Li X, Xue Q, He D, Zhu L, Du Y, Xing W, Zhang T. Sulfur–nitrogen codoped graphite slit-pore for enhancing selective carbon dioxide adsorption: insights from molecular simulations. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8815–8823

    Article  CAS  Google Scholar 

  18. Abe M, Kawashima K, Kozawa K, Sakai H, Kaneko K. Amination of activated carbon and adsorption characteristics of its aminated surface. Langmuir, 2000, 16(11): 5059–5063

    Article  CAS  Google Scholar 

  19. Hu B, Liu X, Chen H, Liu J, Wu Y, Zhao L, Zhang B, Lu Q. The selective adsorption mechanism of CO2 from biomass pyrolysis gas on N-doped carbon materials with an electric field: a first-principles study. Journal of the Energy Institute, 2023, 109: 101301

    Article  CAS  Google Scholar 

  20. Wang Y, Hu X, Guo T, Hao J, Si C, Guo Q. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons. Frontiers of Chemical Science and Engineering, 2021, 15(3): 493–504

    Article  CAS  Google Scholar 

  21. Lin Y C, Teng P Y, Yeh C H, Koshino M, Chiu P W, Suenaga K. Structural and chemical dynamics of pyridinic-nitrogen defects in graphene. Nano Letters, 2015, 15(11): 7408–7413

    Article  CAS  PubMed  Google Scholar 

  22. Li Q, Li X, Zhang G, Jiang J. Cooperative spin transition of monodispersed FeN3 sites within graphene induced by CO adsorption. Journal of the American Chemical Society, 2018, 140(45): 15149–15152

    Article  CAS  PubMed  Google Scholar 

  23. Montejo-Alvaro F, Martinez-Espinosa J A, Rojas-Chavez H, Navarro-Ibarra D C, Cruz-Martinez H, Medina D I. CO2 adsorption over 3d transition-metal nanoclusters supported on pyridinic N3-doped graphene: a DFT investigation. Materials, 2022, 15(17): 6136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Poldorn P, Wongnongwa Y, Mudchimo T, Jungsuttiwong S. Theoretical insights into catalytic CO2 hydrogenation over singleatom (Fe or Ni) incorporated nitrogen-doped graphene. Journal of CO2 Utilization, 2021, 48: 101532

    Article  CAS  Google Scholar 

  25. Zhao C, Wu H. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: a DFT study. Applied Surface Science, 2018, 435: 1199–1212

    Article  CAS  Google Scholar 

  26. Xie T, Wang P, Tian C, Zhao G, Jia J, He C, Zhao C, Wu H. The investigation of adsorption behavior of gas molecules on FeN3-doped graphene. Journal of Sensors, 2022, 2022: 1–8

    Google Scholar 

  27. Lou Z, Li W, Yuan H, Hou Y, Yang H, Wang H. Structural rule of N-coordinated single-atom catalysts for electrochemical CO2 reduction. Journal of Materials Chemistry A, 2022, 10(7): 3585–3594

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186

    Article  CAS  PubMed  Google Scholar 

  29. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  CAS  PubMed  Google Scholar 

  30. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter, 1999, 59(3): 1758–1775

    Article  CAS  Google Scholar 

  31. Aledealat K, Aladerah B, Obeidat A. Magnetic properties of transition-metal atomic monolayer in nickel supercell: density functional theory and monte carlo simulation. Journal of Magnetism and Magnetic Materials, 2022, 564: 170173

    Article  CAS  Google Scholar 

  32. Gong L, Zhang D, Lin C, Zhu Y, Shen Y, Zhang J, Han X, Zhang L, Xia Z. Catalytic mechanisms and design principles for singleatom catalysts in highly efficient CO2 conversion. Advanced Energy Materials, 2019, 9(44): 1902625

    Article  CAS  Google Scholar 

  33. Lin C, Zhang L, Zhao Z, Xia Z. Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production. Advanced Materials, 2017, 29(17): 1606635

    Article  Google Scholar 

  34. Solovyev I V, Dederichs P H, Anisimov V I. Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Physical Review B: Condensed Matter, 1994, 50(23): 16861–16871

    Article  CAS  PubMed  Google Scholar 

  35. Nørskov J K, Studt F, Abild-Pedersen F, Bligaard T. Fundamental Concepts in Heterogeneous Catalysis, 1st ed. Hoboken: John Wiley & Sons, 2014, 119–122

    Book  Google Scholar 

  36. Pham T L M, Nachimuthu S, Kuo J L, Jiang J C. A DFT study of ethane activation on IrO2(110) surface by precursor-mediated mechanism. Applied Catalysis A, General, 2017, 541: 8–14

    Article  CAS  Google Scholar 

  37. Richards A P, Haycock D, Frandsen J, Fletcher T H. A review of coal heating value correlations with application to coal char, tar, and other fuels. Fuel, 2021, 283: 118942

    Article  CAS  Google Scholar 

  38. Lopez G, Alvarez J, Amutio M, Mkhize N M, Danon B, van der Gryp P, Görgens J F, Bilbao J, Olazar M. Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. Energy Conversion and Management, 2017, 142: 523–532

    Article  CAS  Google Scholar 

  39. Li S, Xu S, Liu S, Yang C, Lu Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology, 2004, 85(8–10): 1201–1211

    Article  CAS  Google Scholar 

  40. Shi X, Wang J. A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components. Bioresource Technology, 2014, 170: 262–269

    Article  CAS  PubMed  Google Scholar 

  41. Wang H, Wang X, Cui Y, Xue Z, Ba Y. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): product yield prediction and biochar formation mechanism. Bioresource Technology, 2018, 263: 444–449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 52106241, 52276189 and 52006069), and Fundamental Research Funds for the Central Universities (Grant Nos. 2023JC009 and 2022YQ002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Hu or Qiang Lu.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic supplementary material

11705_2024_2388_MOESM1_ESM.pdf

Insight into the selective separation of CO2 from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials: a first-principles study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Liu, X., Ye, Z. et al. Insight into the selective separation of CO2 from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials: a first-principles study. Front. Chem. Sci. Eng. 18, 25 (2024). https://doi.org/10.1007/s11705-024-2388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2388-2

Keywords

Navigation