Skip to main content
Log in

The role of single deformed bubble on porous foam tray with submerged orifices on the mass transfer enhancement

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Foam trays with porous submerged orifices endow bubbles uniformly distributed, which are considered attractive column internals to enhance the gas-liquid mass transfer process. However, its irregular orifice and complex gas-liquid flow make it lack pore-scale investigations concerning the transfer mechanism of dynamic bubbling. In this work, the actual porous structure of the foam tray is obtained based on micro computed tomography technology. The shape, dynamic, and mass transfer of rising bubbles at porous orifices are investigated using the volume of fluid and continue surface force model. The results demonstrate that the liquid encroaching on the gas channels causes the increasing orifices velocity, which makes the trailing bubble easily detach from the midst of the leading bubble and causes pairing coalescence. Additionally, we found that the central breakup regimes significantly improve the gas-liquid interface area and mass transfer efficiency. This discovery exemplifies the mechanism of mass transfer intensification for foam trays and serves to promote its further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

α i :

Volume fraction of the i phase, dimensionless

A b :

Bubble deformation area/m2

A b,0 :

Initial spherical bubble area/m2

d b :

Bubble diameter/m

d b,0 :

Initial spherical bubble diameter/m

d o :

Orifice diameter/m

d e :

Equivalent diameter of the bubble/m

D 1 :

Diffusion coefficient/(m2·s−1)

F VOL :

Volume force/N

g :

Gravitational acceleration/(m·s−2)

Ga :

Galilei number

H CL :

Liquid level height/m

k 1 :

Mass transfer coefficient/(m·s−1)

L :

Characteristic length/m

Eo :

Eötvos number

m gl :

Mass transfer rate from gas to liquid/(kg·m−3·s−1)

Mo :

Morton number

V o :

Basic bubble volume/m3

V b :

Bubble volume/m3

θ wall :

Static contact angle

ρ i :

i phase density/(kg·m−3)

P :

System pressure/Pa

R :

Bubble radius/m

Re O :

Orifice Reynolds number

U g :

Superficial gas velocity/(m·s−1)

U g,o :

Gas velocity at the orifice/(m·s−1)

v :

Kinematic viscosity/(m2·s−1)

μ i :

i phase viscosity/(mPa·s)

t :

Flow time/s

σ :

Surface tension/(N·m−1)

ρ :

Density/(kg·m−3)

b:

means bubble

g:

means gas phase

l:

means liquid phase

o:

means orifice

References

  1. Zhang R, Chen H, Mu Y, Chansai S, Ou X, Hardacre C, Jiao Y, Fan X. Structured Ni@NaA zeolite supported on silicon carbide foam catalysts for catalytic carbon dioxide methanation. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(11): e17007

    Article  CAS  Google Scholar 

  2. Ou X, Xu S, Warnett J M, Holmes S M, Zaheer A, Garforth A A, Williams M A, Jiao Y, Fan X. Creating hierarchies promptly: microwave-accelerated synthesis of ZSM-5 zeolites on macrocellular silicon carbide (SiC) foams. Chemical Engineering Journal, 2017, 312: 1–9

    Article  CAS  Google Scholar 

  3. Ou X, Pilitsis F, Jiao Y, Zhang Y, Xu S, Jennings M, Yang Y, Taylor S, Garforth A, Zhang H, Hardacre C, Yan Y, Fan X. Hierarchical Fe-ZSM-5/SiC foam catalyst as the foam bed catalytic reactor (FBCR) for catalytic wet peroxide oxidation (CWPO). Chemical Engineering Journal, 2019, 362: 53–62

    Article  CAS  Google Scholar 

  4. Chen H, Shao Y, Mu Y, Xiang H, Zhang R, Chang Y, Hardacre C, Wattanakit C, Jiao Y, Fan X. Structured silicalite-1 encapsulated Ni catalyst supported on SiC foam for dry reforming of methane. AIChE Journal. American Institute of Chemical Engineers, 2020, 67(4): e17126

    Article  Google Scholar 

  5. Li X, Shi Q, Li H, Yao Y, Pavlenko A N, Gao X. Experimental characterization of novel SiC foam corrugated structured packing with varied pore size and corrugation angle. Journal of Engineering Thermophysics, 2017, 26(4): 452–465

    Article  CAS  Google Scholar 

  6. Zhang L, Liu X, Li X, Gao X, Sui H, Zhang J, Yang Z, Tian C, Li H. A novel SiC foam valve tray for distillation columns. Chinese Journal of Chemical Engineering, 2013, 21(8): 821–826

    Article  CAS  Google Scholar 

  7. Zhang L, Liu X, Li H, Sui H, Li X, Zhang J, Yang Z, Tian C, Gao G. Hydrodynamic and mass transfer performances of a new SiC foam column tray. Chemical Engineering & Technology, 2012, 35(12): 2075–2083

    Article  CAS  Google Scholar 

  8. Yan P, Li X, Li H, Gao X. Hydrodynamics and flow mechanism of foam column trays: contact angle effect. Chemical Engineering Science, 2018, 176: 220–232

    Article  CAS  Google Scholar 

  9. Li H, Fu L, Li X, Gao X. Mechanism and analytical models for the gas distribution on the SiC foam monolithic tray. AIChE Journal. American Institute of Chemical Engineers, 2015, 61(12): 4509–4516

    Article  CAS  Google Scholar 

  10. Byakova A V, Gnyloskurenko S V, Nakamura T, Raychenko O I. Influence of wetting conditions on bubble formation at orifice in an inviscid liquid. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2003, 229(1–3): 19–32

    Article  CAS  Google Scholar 

  11. Gnyloskurenko S V, Byakova A V, Raychenko O I, Nakamura T. Influence of wetting conditions on bubble formation at orifice in an inviscid liquid. Transformation of bubble shape and size. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2003, 218(1–3): 73–87

    CAS  Google Scholar 

  12. Hecht K J, Velagala S, Easo D A, Saleem M A, Krause U. Influence of wettability on bubble formation from submerged orifices. Industrial & Engineering Chemistry Research, 2020, 59(9): 4071–4078

    Article  CAS  Google Scholar 

  13. Mirsandi H, Baltussen M W, Peters E A J F, van Odyck D E A, van Oord J, van der Plas D, Kuipers J. Numerical simulations of bubble formation in liquid metal. International Journal of Multiphase Flow, 2020, 131: 103363

    Article  CAS  Google Scholar 

  14. Mirsandi H, Smit W J, Kong G, Baltussen M W, Peters E A J F, Kuipers J A M. Bubble formation from an orifice in liquid cross-flow. Chemical Engineering Journal, 2020, 386: 120902

    Article  CAS  Google Scholar 

  15. Islam M T, Ganesan P B, Sahu J N, Sandaran S C. Effect of orifice size and bond number on bubble formation characteristics: a CFD study. Canadian Journal of Chemical Engineering, 2015, 93(10): 1869–1879

    Article  CAS  Google Scholar 

  16. Lee S J Y, An H, Wang P C, Hang J G, Yu S C M. Effects of liquid viscosity on bubble formation characteristics in a typical membrane bioreactor. International Communications in Heat and Mass Transfer, 2021, 120: 105000

    Article  CAS  Google Scholar 

  17. Zhang L, Shoji M. Aperiodic bubble formation from a submerged orifice. Chemical Engineering Science, 2001, 56(18): 5371–5381

    Article  CAS  Google Scholar 

  18. Grace J R, Wairegi T, Nguyen T H. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Chemical Engineering Research & Design, 1976, 54: 167–173

    CAS  Google Scholar 

  19. Tripathi M K, Sahu K C, Govindarajan R. Dynamics of an initially spherical bubble rising in quiescent liquid. Nature Communications, 2015, 6(1): 6268

    Article  CAS  PubMed  Google Scholar 

  20. Fourie J G, Du Plessis J P. Pressure drop modelling in cellular metallic foams. Chemical Engineering Science, 2002, 57(14): 2781–2789

    Article  CAS  Google Scholar 

  21. Habisreuther P, Djordjevic N, Zarzalis N. Statistical distribution of residence time and tortuosity of flow through open-cell foams. Chemical Engineering Science, 2009, 64(23): 4943–4954

    Article  CAS  Google Scholar 

  22. Kumar P, Topin F. Investigation of fluid flow properties in open cell foams: darcy and weak inertia regimes. Chemical Engineering Science, 2014, 116: 793–805

    Article  CAS  Google Scholar 

  23. Li X, Gao G, Zhang L, Sui H, Li H, Gao X, Yang Z, Tian C, Zhang J. Multiscale simulation and experimental study of novel SiC structured packings. Industrial & Engineering Chemistry Research, 2012, 51(2): 915–924

    Article  Google Scholar 

  24. Rambabu S, Kartik Sriram K, Chamarthy S, Parthasarathy P, Ratna kishore V. Ratna kishore V. A proposal for a correlation to calculate pressure drop in reticulated porous media with the help of numerical investigation of pressure drop in ideal & randomized reticulated structures. Chemical Engineering Science, 2021, 237: 116518

    CAS  Google Scholar 

  25. Bracconi M, Ambrosetti M, Maestri M, Groppi G, Tronconi E. A systematic procedure for the virtual reconstruction of open-cell foams. Chemical Engineering Journal, 2017, 315: 608–620

    Article  CAS  Google Scholar 

  26. Wehinger G D, Heitmann H, Kraume M. An artificial structure modeler for 3D CFD simulations of catalytic foams. Chemical Engineering Journal, 2016, 284: 543–556

    Article  CAS  Google Scholar 

  27. De Carvalho T P, Morvan H P, Hargreaves D, Oun H, Kennedy A. Experimental and tomography-based CFD investigations of the flow in open cell metal foams with application to aero engine separators. Turbo Expo: Power for Lan, Sea, and Air. Montréal, Canada: American Society of Mechanical Engineers (ASME), 2015, 56734: V05CT15A028

    Google Scholar 

  28. Bracconi M, Ambrosetti M, Okafor O, Sans V, Zhang X, Ou X, Pereira Da Fonte C, Fan X, Maestri M, Groppi G, et al. Investigation of pressure drop in 3D replicated open-cell foams: coupling CFD with experimental data on additively manufactured foams. Chemical Engineering Journal, 2019, 377: 120123

    Article  CAS  Google Scholar 

  29. Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2): 335–354

    Article  CAS  Google Scholar 

  30. Özkan F, Wenka A, Hansjosten E, Pfeifer P, Kraushaar-Czarnetzki B. Numerical investigation of interfacial mass transfer in two phase flows using the VOF method. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 100–110

    Article  Google Scholar 

  31. Sander R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 2015, 15(8): 4399–4981

    Article  CAS  Google Scholar 

  32. Whitman W G. The two-film theory of gas absorption. International Journal of Heat and Mass Transfer, 1962, 5(5): 429–433

    Article  Google Scholar 

  33. Anderson C E Jr. Analytical models for penetration mechanics: a review. International Journal of Impact Engineering, 2017, 108: 3–26

    Article  Google Scholar 

  34. Danckwerts P V. Significance of liquid-film coefficients in gas absorption. Industrial & Engineering Chemistry, 1951, 43(6): 1460–1467

    Article  CAS  Google Scholar 

  35. Krevelen D, Hoftijzer P J. Studies of gas bubble formation. Chemical Engineering Progress, 1950, 46(1): 29–35

    Google Scholar 

  36. Haynes W M, Lide D R, Bruno T J. CRC Handbook of Chemistry and Physics. 97th ed. Boca Raton: CRC press, 2016, 6: 261–262

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 22178249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Gao.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Geng, X., Na, J. et al. The role of single deformed bubble on porous foam tray with submerged orifices on the mass transfer enhancement. Front. Chem. Sci. Eng. 17, 2127–2143 (2023). https://doi.org/10.1007/s11705-023-2363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2363-3

Keywords

Navigation