Skip to main content
Log in

Thermodynamic analysis of reaction pathways and equilibrium yields for catalytic pyrolysis of naphtha

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The chain length and hydrocarbon type significantly affect the production of light olefins during the catalytic pyrolysis of naphtha. Herein, for a better catalyst design and operation parameters optimization, the reaction pathways and equilibrium yields for the catalytic pyrolysis of C5–8n/iso/cyclo-paraffins were analyzed thermodynamically. The results revealed that the thermodynamically favorable reaction pathways for n/iso-paraffins and cyclo-paraffins were the protolytic and hydrogen transfer cracking pathways, respectively. However, the formation of light paraffin severely limits the maximum selectivity toward light olefins. The dehydrogenation cracking pathway of n/iso-paraffins and the protolytic cracking pathway of cyclo-paraffins demonstrated significantly improved selectivity for light olefins. The results are thus useful as a direction for future catalyst improvements, facilitating superior reaction pathways to enhance light olefins. In addition, the equilibrium yield of light olefins increased with increasing the chain length, and the introduction of cyclo-paraffin inhibits the formation of light olefins. High temperatures and low pressures favor the formation of ethylene, and moderate temperatures and low pressures favor the formation of propylene. n-Hexane and cyclohexane mixtures gave maximum ethylene and propylene yield of approximately 49.90% and 55.77%, respectively. This work provides theoretical guidance for the development of superior catalysts and the selection of proper operation parameters for the catalytic pyrolysis of C5–8n/iso/cyclo-paraffins from a thermodynamic point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\Delta _{\rm{f}}}H_{\rm{m}}^\theta \) :

Standard molar formation enthalpy, kJ

T :

Reaction temperature, K

C p,m :

Molar heat capacity at constant pressure, J·mol−1 ·K−1

\({\Delta _{\rm{f}}}S_{\rm{m}}^\theta \) :

Standard molar formation entropy, J·K−1

C p,m,i :

Contribution value of each group to the Cp,m

N i :

The number of groups

\({\Delta _{\rm{r}}}H_{\rm{m}}^\theta \) :

Standard molar reaction enthalpy, kJ

\({\Delta _{\rm{r}}}S_{\rm{m}}^\theta \) :

Standard molar reaction entropy, J·K−1

\({\Delta _{\rm{r}}}G_{\rm{m}}^\theta \) :

Standard molar reaction Gibbs free energy, kJ

K θ :

Standard equilibrium constant

R :

Molar gas constant, J·mol−1 ·K−1

G t :

Total Gibbs free energy of mixed system, kJ

n t :

Numbers of moles of species i

μ i :

Chemical potential of species i

λ k :

Lagrange multiplier of the kth element

β ki :

Number of atoms of the kth element in a mole of the ith species

b k :

Total moles of the kth element, mol

\(\Delta G_{i,{\rm{f}}}^\theta \) :

Standard mole generation Gibbs free energy of species i, kJ·mol−1

P :

Total hydrocarbon pressure, MPa

P θ :

Standard pressure, MPa

References

  1. Kubo K, Takahashi T, Iida H, Namba S, Igarashi A. Reactivities of C6–8 hydrocarbons and effect of coexistence of another hydrocarbon in cracking on H-ZSM-5 catalyst at high temperatures. Applied Catalysis A: General, 2014, 482: 370–376

    Article  CAS  Google Scholar 

  2. Wattanapaphawong P, Reubroycharoen P, Mimura N, Sato O, Yamaguchi A. Effect of carbon number on the production of propylene and ethylene by catalytic cracking of straight-chain paraffins over phosphorus-modified ZSM-5. Fuel Processing Technology, 2020, 202: 106367

    Article  CAS  Google Scholar 

  3. Ren L, Wang B, Lu K, Peng R, Guan Y, Jiang J, Xu H, Wu P. Selective conversion of methanol to propylene over highly dealuminated mordenite: Al location and crystal morphology effects. Chinese Journal of Catalysis, 2021, 42(7): 1147–1159

    Article  CAS  Google Scholar 

  4. Bai Y, Zhang G, Liu D, Zhang Y, Zhao L, Gao J, Xu C, Meng Q, Gao X. The advance in catalytic pyrolysis of naphtha technology using ZSM-5 as catalyst. Applied Catalysis A: General, 2021, 628: 118399

    Article  CAS  Google Scholar 

  5. Chen F, Hao J, Yu Y, Cheng D, Zhan X. The influence of external acid strength of hierarchical ZSM-5 zeolites on n-heptane catalytic cracking. Microporous and Mesoporous Materials, 2022, 330: 111575

    Article  CAS  Google Scholar 

  6. Chen X, Zhang X, Qin R, Shan S, Xia P, Li N, Pu J, Liu J, Liu Y, Yang C. Distribution of nitrogen and oxygen compounds in shale oil distillates and their catalytic cracking performance. Petroleum Science, 2020, 17: 1764–1778

    Article  CAS  Google Scholar 

  7. Cheng Q, Shen B, Sun H, Zhao J, Liu J. Methanol promoted naphtha catalytic pyrolysis to light olefins on Zn-modified high-silicon HZSM-5 zeolite catalysts. RSC Advances, 2019, 9(36): 20818–20828

    Article  CAS  Google Scholar 

  8. Ng S H, Heshka N E, Lay C, Little E, Zheng Y, Wei Q, Ding F. FCC coprocessing oil sands heavy gas oil and canola oil. 2. Gasoline hydrocarbon type analysis. Green Energy & Environment, 2018, 3(3): 286–301

    Article  Google Scholar 

  9. Ng S H, Heshka N E, Zheng Y, Wei Q, Ding F. FCC coprocessing oil sands heavy gas oil and canola oil. 3. Some cracking characteristics. Green Energy & Environment, 2019, 4(1): 83–91

    Article  Google Scholar 

  10. Ding J, Xue T, Wu H, He M. One-step post-synthesis treatment for preparing hydrothermally stable hierarchically porous ZSM-5. Chinese Journal of Catalysis, 2017, 38(1): 48–57

    Article  CAS  Google Scholar 

  11. Pouria R, Vafi L, Karimzadeh R. Propane catalytic cracking on pretreated La-ZSM-5 zeolite during calcination for light olefins production. Journal of Rare Earths, 2017, 35(6): 542–550

    Article  CAS  Google Scholar 

  12. Meng X, Xu C, Gao J, Li L. Studies on catalytic pyrolysis of heavy oils: reaction behaviors and mechanistic pathways. Applied Catalysis A: General, 2005, 294(2): 168–176

    Article  CAS  Google Scholar 

  13. Whitmore F C. Mechanism of the polymerization of olefins by acid catalysts. Industrial & Engineering Chemistry, 1934, 26(1): 94–95

    Article  CAS  Google Scholar 

  14. Hansford R C. A mechanism of catalytic cracking. Industrial & Engineering Chemistry, 1947, 39(7): 849–852

    Article  CAS  Google Scholar 

  15. Fu Y, Ni Y, Cui W, Fang X, Chen Z, Liu Z, Zhu W, Liu Z. Insights into the size effect of ZnCr2O4 spinel oxide in composite catalysts for conversion of syngas to aromatics. Green Energy & Environment, 2021, in press

  16. Li J, Li T, Ma H, Sun Q, Ying W, Fang D. Effect of nickel on phosphorus modified HZSM-5 in catalytic cracking of butene and pentene. Fuel Processing Technology, 2017, 159: 31–37

    Article  CAS  Google Scholar 

  17. Lin L F, Zhao S F, Zhang D W, Fan H, Liu Y M, He M Y. Acid strength controlled reaction pathways for the catalytic cracking of 1-pentene to propene over ZSM-5. ACS Catalysis, 2015, 5(7): 4048–4059

    Article  CAS  Google Scholar 

  18. Caeiro G, Carvalho R H, Wang X, Lemos M A N D A, Lemos F, Guisnet M, Ribeiro F R. Activation of C2—C4 paraffins over acid and bifunctional zeolite catalysts. Journal of Molecular Catalysis A: Chemical, 2006, 255(1–2): 131–158

    Article  CAS  Google Scholar 

  19. Lukyanov D B, Gnep N S, Guisnet M R. Kinetic modeling of propane aromatization reaction over HZSM-5 and GaHZSM-5. Industrial & Engineering Chemistry Research, 1995, 34(2): 516–523

    Article  CAS  Google Scholar 

  20. Liu D, Cao L, Zhang G, Zhao L, Gao J, Xu C. Catalytic conversion of light paraffins to aromatics by metal-containing HZSM-5 zeolite catalysts—a review. Fuel Processing Technology, 2021, 216: 106770

    Article  CAS  Google Scholar 

  21. Hou X, Qiu Y, Zhang X, Liu G. Analysis of reaction pathways for n-pentane cracking over zeolites to produce light olefins. Chemical Engineering Journal, 2017, 307: 372–381

    Article  CAS  Google Scholar 

  22. Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Applied Catalysis A: General, 2011, 398(1–2): 1–17

    Article  CAS  Google Scholar 

  23. Nakasaka Y, Okamura T, Konno H, Tago T, Masuda T. Crystal size of MFI-type zeolites for catalytic cracking of n-hexane under reaction-control conditions. Microporous and Mesoporous Materials, 2013, 2182: 244–249

    Article  Google Scholar 

  24. Wang R, Li Y, Jiang G, Zhang Y, Zhao Z, Xu C, Duan A, Wang Y. An efficient head-tail co-conversion process for high quality gasoline via rational catalytic cracking. Chemical Engineering Journal, 2020, 396: 125210

    Article  CAS  Google Scholar 

  25. Wang Y, Jiang P, Zhu Y. A novel global reaction modeling approach considering the effects of pressure on pyrolysis of n-decane at supercritical pressures. Fuel, 2021, 287: 119416

    Article  CAS  Google Scholar 

  26. Kubo K, Iida H, Namba S, Igarashi A. Selective formation of light olefin by n-heptane cracking over HZSM-5 at high temperatures. Microporous and Mesoporous Materials, 2012, 149(1): 126–133

    Article  CAS  Google Scholar 

  27. Konno H, Okamura T, Kawahara T, Nakasaka Y, Tago T, Masuda T. Kinetics of n-hexane cracking over ZSM-5 zeolites—effect of crystal size on effectiveness factor and catalyst lifetime. Chemical Engineering Journal, 2012, 207–208: 490–496

    Article  Google Scholar 

  28. Mochizuki H, Yokoi T, Imai H, Namba S, Kondo J N, Tatsumi T. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Applied Catalysis A: General, 2012, 449: 188–197

    Article  CAS  Google Scholar 

  29. Hou X, Ni N, Wang Y, Zhu W, Qiu Y, Diao Z, Liu G, Zhang X. Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins. Journal of Analytical and Applied Pyrolysis, 2019, 138: 270–280

    Article  CAS  Google Scholar 

  30. Zhu T, Liang H, Zhang B, Tian Y, Liu G. Controllably tailoring external surface sites of nanosheet HZSM-5 for maximizing light olefins in catalytic cracking of n-decane. Chinese Journal of Chemical Engineering, 2021, 38: 276–285

    Article  Google Scholar 

  31. Zhai P, Zheng J, Zhang J, Wang H, Qin Y, Liu H, Song L. Insight into reaction path and mechanism of catalytic cracking of n-hexane in HZSM-5 zeolites. Journal of Fuel Chemistry & Technology, 2021, 49(10): 1522–1530

    Article  Google Scholar 

  32. Zhu X, Song Y, Li H, Liu S, Sun X, Xu L. Study on thermodynamics of butene catalytic cracking to propene and ethene. Chinese Journal of Catalysis, 2005, 26: 111–117 (in Chinese)

    CAS  Google Scholar 

  33. Lehmann T, Seidel-Morgenstern A. Thermodynamic appraisal of the gas phase conversion of ethylene or ethanol to propylene. Chemical Engineering Journal, 2014, 242: 422–432

    Article  CAS  Google Scholar 

  34. Fu K, Chen M. Evaluation on migration of radioactive metal in irradiated graphite waste during an innovative thermal treatment based upon the Gibbs free energy minimization. Petroleum Science, 2022, 147: 10145–10161

    CAS  Google Scholar 

  35. Liu D, Zhang L, Zhang B, Bai Y, Zhao L, Gao J, Xu C, Liu H, Liu X. Analysis of thermodynamic equilibrium yield and process simulation for catalytic pyrolysis of light hydrocarbons based on one set of independent reactions. Chemical Engineering Science, 2022, 257: 117718

    Article  CAS  Google Scholar 

  36. Dalmazzone D, Salmon A, Guella S. A second order group contribution method for the prediction of criticalntemperatures and enthalpies of vaporization of organic compounds. Fluid Phase Equilibria, 2006, 242(1): 29–42

    Article  CAS  Google Scholar 

  37. Benson S W, Buss J H. Additivity rules for the estimation of molecular properties. thermodynamic properties. Journal of Chemical Physics, 1958, 29(3): 546–572

    Article  CAS  Google Scholar 

  38. Sharma V, Agarwal V K. Equilibrium modeling and optimization for gasification of high-ash indian coals by the Gibbs free energy minimization method. Process Integration and Optimization for Sustainability, 2019, 3(4): 487–504

    Article  CAS  Google Scholar 

  39. Huang H, Li Z, Ni W. The Gibbs reactor model and its realization on the computer. Power Engineering, 2004, 24: 902–907 (in Chinese)

    Google Scholar 

  40. Ghassemi H, Shahsavan-Markadeh R. Effects of various operational parameters on biomass gasification process; a modified equilibrium model. Energy Conversion and Management, 2014, 79: 18–24

    Article  CAS  Google Scholar 

  41. Koukkari P, Pajarre R. Introducing mechanistic kinetics to the Lagrangian Gibbs energy calculation. Computers & Chemical Engineering, 2006, 30(6–7): 1189–1196

    Article  CAS  Google Scholar 

  42. Momayez F, Darian J T, Sendesi S M T. Synthesis of zirconium and cerium over HZSM-5 catalysts for light olefins production from naphtha. Journal of Analytical and Applied Pyrolysis, 2015, 112: 135–140

    Article  CAS  Google Scholar 

  43. Hansen R C. Thermodynamic changes, kinetics, equilibrium, and LeChatelier’s principle. Journal of Chemical Education, 1984, 61(9): 804

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Grant No. 22021004) and the National Key Research and Development Program of China (Grant No. 2020YFA0210900)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zhi, Y., Bai, Y. et al. Thermodynamic analysis of reaction pathways and equilibrium yields for catalytic pyrolysis of naphtha. Front. Chem. Sci. Eng. 16, 1700–1712 (2022). https://doi.org/10.1007/s11705-022-2207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2207-6

Keywords

Navigation