Skip to main content
Log in

Bio-fabrication of Cu/Fe/Zn nanoparticles and its antioxidant and catalytic activity

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In recent decades, the field of nanotechnology has been on the rise as it has the ability to establish a valuable, healthy, and safe living environment by using a greener approach. One such approach involves the green synthesis of trimetallic nanoparticles (NPs). The term “green” refers to the fact that the synthesis methods are usually nontoxic, inexpensive, and energy-efficient. Green synthesis techniques often result in nanoparticles that are more stable, biocompatible, and safe for use in both environmental and biomedical applications. These trimetallic NPs have proven to have better catalytic and antimicrobial activity than mono- or bimetallic nanoparticles owing to their synergistic effects. This study presents a biological approach to synthesise Cu/Fe/Zn trimetallic nanoparticles by utilising the leaf extract of Catharanthus roseus for the first time. The nanoparticles were characterised using UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) along with energy dispersive spectrometer (EDS). The average crystalline size of the synthesised Cu/Fe/Zn NPs was found to be around 32 nm. The synthesised NPs were discovered to be a mixture of triangular and spherical forms using SEM. At a concentration of 1000 µg/ml, the synthesised Cu/Fe/Zn nanoparticles demonstrated scavenging activity of 75.76%. The dye degradation activity data for eosin yellow and phenol red showed notable degradation of 74% and 88% respectively, indicating the potential for further study in the area. Therefore, Cu/Fe/Zn NPs synthesised from the leaf extracts of Catharanthus roseus might serve as a novel catalytic agent in the treatment of wastewater contaminated with dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410

    CAS  PubMed  Google Scholar 

  • Alam MW, Al Qahtani HS, Souayeh B, Ahmed W, Albalawi H, Farhan M, Naeem S (2022) Novel copper-zinc-manganese ternary metal oxide nanocomposite as heterogeneous catalyst for glucose sensor and antibacterial activity. Antioxid 11(6):1064

    CAS  Google Scholar 

  • Alshehri A, Malik M (2020) Facile one-pot biogenic synthesis of Cu-Co-Ni trimetallic nanoparticles for enhanced photocatalytic dye degradation. Catal 10(10):1138

    CAS  Google Scholar 

  • Asouhidou DD, Triantafyllidis KS, Lazaridis NK, Matis KA, Kim S, Pinnavaia TJ (2009) Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous Mesoporous Mater 117(1–2):257–267

    CAS  Google Scholar 

  • Azeez L, Lateef A, Adebisi SA (2017) Silver nanoparticles (Agnps) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Appl Nanosci 7(1–2):59–66

    CAS  Google Scholar 

  • Basavegowda N, Mishra K, Lee YR (2017) Trimetallic FeAgPt alloy as a nanocatalyst for the reduction of 4-nitroaniline and decolorization of rhodamine B: a comparative study. J Alloy Compd 701:456–464

    CAS  Google Scholar 

  • Bedlovičová Z, Strapáč I, Baláž M, Salayová A (2020) A brief overview on antioxidant activity determination of silver nanoparticles. Molecules 25(14):3191

    PubMed  PubMed Central  Google Scholar 

  • Belattar S, Debbache N, Ghoul I, Sehili T, Abdessemed A (2018) Photodegradation of phenol red in the presence of oxyhydroxide of fe(III) (goethite) under artificial and natural light. Water Environ J 32(3):358–365

    CAS  Google Scholar 

  • Beltran E, Pla R, Yuste J, Mor-Mur M (2004) Use of antioxidants to minimize rancidity in pressurized and cooked chicken slurries. Meat Sci 66(3):719–725

    CAS  PubMed  Google Scholar 

  • Bhutto TA, Jakhrani MA, Jamali AA, Buledi JA, Janwary RD, Hyder A, Kalwar NH (2023) Strategic fabrication of PVP-capped Cuo hetero-catalyst for degradation of eosin Y: a decontamination study. J Iran Chem Soc 20:1225

    CAS  Google Scholar 

  • Bokare AD, Chikate RC, Rode CV, Paknikar KM (2008) Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye orange G in aqueous solution. Appl Catal B Environ 79(3):270–278

    CAS  Google Scholar 

  • Chand Mali S, Raj S, Trivedi R (2019) Biosynthesis of copper oxide nanoparticles using Enicostemma Axillare (Lam.) leaf extract. Biochem Biophys Res Commun 20:100699

    Google Scholar 

  • CRINI, G. (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085

    PubMed  Google Scholar 

  • Di Mauro A, Zimbone M, Scuderi M, Nicotra G, Fragalà ME, Impellizzeri G (2015) Effect of Pt nanoparticles on the photocatalytic activity of Zno nanofibers. Nanoscale Res Lett 10(1):1–7

    Google Scholar 

  • Dobrucka R (2019) Facile synthesis of trimetallic nanoparticles Au/CuO/ZnO using Vitex agnus-castus extract and their activity in degradation of organic dyes. Int J Environ Anal Chem 101:2046

    Google Scholar 

  • Dutta S, Gupta B, Srivastava SK, Gupta AK (2021) Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv 2(14):4497–4531

    CAS  Google Scholar 

  • Estévez M, Li Z, Soladoye OP, Van-Hecke T (2017) Health risks of food oxidation. Adv Food Nutr Res 82:45–81

    PubMed  Google Scholar 

  • Fathima JB, Pugazhendhi A, Oves M, Venis R (2018) Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes. J Mol Liq 260:1–8

    CAS  Google Scholar 

  • Ferreres F et al (2008) New phenolic compounds and antioxidant potential of Catharanthus roseus. J Agric Food Chem 56(21):9967–9974

    PubMed  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638

    CAS  Google Scholar 

  • Jin X, Duan Y, Liu D, Feng X, Li W, Zhang Z, Zhang Y (2019) CO oxidation catalyzed by two-dimensional Co3O4/CeO2 nanosheets. ACS Appl Nano Mater 2(9):5769–5778

    CAS  Google Scholar 

  • Kalaiselvi M, Ramasamy S, Selvam M (2013) Synthesis and characterization of silver nanoparticles from leaf extract of Parthenium hysterophorus and its anti-bacterial and antioxidant activity. Int J Curr Microbiol Appl Sci 2:220–227

    Google Scholar 

  • Kamli M, Srivastava V, Hajrah N, Sabir J, Hakeem K, Ahmad A, Malik M (2021) Facile bio-fabrication of Ag-Cu-Co trimetallic nanoparticles and its fungicidal activity against Candida auris. J Fungi 7(1):62

    CAS  Google Scholar 

  • Kannan RR, Arumugam R, Ramya D, Manivannan K, Anantharaman P (2012) Green synthesis of silver nanoparticles using marine Macroalga Chaetomorpha linum. Appl Nanosci 3(3):229–233

    Google Scholar 

  • Karpagavinayagam P, Vedhi C (2019) Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vaccum 160:286–292

    CAS  Google Scholar 

  • Keijok WJ, Pereira RH, Alvarez LA, Prado AR, Da Silva AR, Ribeiro J, Guimarães MC (2019) Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Sci Rep 9(1):16019

    PubMed  PubMed Central  Google Scholar 

  • Khalid A, Ahmad P, Alharthi AI, Muhammad S, Khandaker MU, Rehman M, Bradley DA (2021) Structural, optical, and antibacterial efficacy of pure and zinc-doped copper oxide against pathogenic bacteria. Nanomater 11(2):451

    CAS  Google Scholar 

  • Kumar I, Mondal M, Meyappan V, Sakthivel N (2019) Green one-pot synthesis of gold nanoparticles using Sansevieria roxburghiana leaf extract for the catalytic degradation of toxic organic pollutants. Mater Res Bull 117:18–27

    CAS  Google Scholar 

  • Kunwar S, Roy A, Bhusal U, Gacem A, Abdullah MM, Sharma P, Yadav KK, Rustagi S, Chatterjee N, Deshwal VK, Park HK (2023) Bio-fabrication of Cu/Ag/zn nanoparticles and their antioxidant and dye degradation activities. Catalysts 13(5):891

    CAS  Google Scholar 

  • Liu H, Chiou Y (2005) Optimal decolorization efficiency of reactive red 239 by UV/tio2 photocatalytic process coupled with response surface methodology. Biochem Eng J 112(1–3):173–179

    CAS  Google Scholar 

  • Mishra JN, Verma NK (2017) A brief study on Catharanthus roseus: a review. Int J Res Pharm Pharmaceut Sci 2(2):20–23

    Google Scholar 

  • Moran-Palacio E, Zamora-Álvarez L, Stephens-Camacho N, Yáñez- Farías G, Virgen-Ortiz A, Martínez-Cruz O, Rosas-Rodríguez J (2014) Antioxidant capacity, radical scavenging kinetics and phenolic profile of methanol extracts of wild plants of southern Sonora, Mexico. Trop J Pharm Res 13(9):1487

    Google Scholar 

  • Mukunthan K, Elumalai E, Patel TN, Murty VR (2011) Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac J Trop Biomed 1(4):270–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murali M, Mahendra C, Nagabhushan, Rajashekar N, Sudarshana M, Raveesha K, Amruthesh K (2017) Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L. – an endemic species. Spectrochim Acta A Mol Biomol Spectrosc 179:104–109

    CAS  PubMed  Google Scholar 

  • Nandhini N, Rajeshkumar S, Mythili S (2019) The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatal Agric Biotech 19:101138

    Google Scholar 

  • Nasrollahzadeh M, Mohammad Sajadi S (2015) Green synthesis of copper nanoparticles using Ginkgo biloba L. Leaf extract and their catalytic activity for the Huisgen [3 + 2] cycloaddition of azides and alkynes at room temperature. J Colloid Interface Sci 457:141–147

    CAS  PubMed  Google Scholar 

  • Poopathi S, De Britto LJ, Praba VL, Mani C, Praveen M (2014) Synthesis of silver nanoparticles from Azadirachta indica—a most effective method for mosquito control. Environ Sci Pollut Res 22(4):2956–2963

    Google Scholar 

  • Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM, Etessamifar F, Jaberizadeh AH, Shakeri A (2020) Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int J Nanomed 15:3983–3999

    CAS  Google Scholar 

  • Rashid S, Ahmad M, Zafar M, Sultana S, Ayub M, Khan MA, Yaseen G (2015) Ethnobotanical survey of medicinally important shrubs and trees of Himalayan region of Azad Jammu and Kashmir, Pakistan. J Ethnopharmacol 166:340–351

    PubMed  Google Scholar 

  • Roy A, Kunwar S, Bhusal U, Alghamdi S, Almehmadi M, Alhuthali HM, Allahyani M, Hossain MJ, Hasan MA, Sarker MMR, Azlina MFN (2023) Bio-fabrication of trimetallic nanoparticles and their applications. Catalysts 13(2):321

    CAS  Google Scholar 

  • Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS, Ravikumar V (2014) Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta A Mol Biomol Spectrosc 121:746–750

    CAS  PubMed  Google Scholar 

  • Sharma G, Kumar D, Kumar A, Al-Muhtaseb AH, Pathania D, Naushad M, Mola GT (2017) Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review. Mater Sci Eng C Mater Biol Appl 71:1216–1230

    CAS  PubMed  Google Scholar 

  • Sreeju N, Rufus A, Philip D (2017) Studies on catalytic degradation of organic pollutants and anti-bacterial properties using biosynthesized Cuo nanostructures. J Mol Liq 242:690–700

    CAS  Google Scholar 

  • Sudha A, Jeyakanthan J, Srinivasan P (2017) Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resour Eff Technol 3(4):506–515

    Google Scholar 

  • Supraja N, Prasad TN, Krishna TG, David E (2015) Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles. Appl Nanosci 6(4):581–590

    Google Scholar 

  • Vanaja A, Suresh M, Jeevanandam J, Venkatesh A, Gousia S, Pavan D, Murthy NB (2019) Copper-doped zinc oxide nanoparticles for the fabrication of white leds. Prot Met Phys Chem Surf 55(3):481–486

    Google Scholar 

  • Vidhu V, Philip D (2014) Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56:54–62

    CAS  PubMed  Google Scholar 

  • Wu Y, Elhouda Tiri RN, Bekmezci M, Altuner EE, Aygun A, Mei C, Sen F (2022) Synthesis of novel activated carbon-supported Trimetallic Pt–Ru–Ni nanoparticles using wood chips as efficient catalysts for the hydrogen generation from NABH4 and enhanced photodegradation on methylene blue. Int J Hydrogen Energy 48:21055–21065

    Google Scholar 

  • Xingu-Contreras E, García-Rosales G, Cabral-Prieto A, García-Sosa I (2017) Degradation of methyl orange using iron boride nanoparticles supported in a natural zeolite. Environ Nanotechnol Monit Manag 7:121–129

    Google Scholar 

  • Zahir AA et al (2015) Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob Agents Chemother 59(8):4782–4799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Xu S, Wu W, Qi Y, Lin Z, Li Y, Qin Y (2022) Hierarchical Hollow zinc oxide nanocomposites derived from morphology-tunable coordination polymers for enhanced solar hydrogen production. Angew Chem Int Ed 61(29):e202205312

    CAS  Google Scholar 

  • Zhu Q, Xu S, Qin Y, Lam JCH, Li Y (2023) Multication and structure regulation: utilizing X-doped (X= Co, Mn, Cu) ZnS/CoO hollow composites to spatially propel the charge for superior solar hydrogen evolution. Solar RRL 7(2):2200918

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AR planned the overall content of the paper. UB and SK carried out the research work. UB, AR, SK wrote the manuscript. AR has done the conceptualisation and supervision of the paper. All the authors approved the final version.

Corresponding author

Correspondence to Arpita Roy.

Ethics declarations

Conflict of interest

No competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhusal, U., Roy, A. & Kunwar, S. Bio-fabrication of Cu/Fe/Zn nanoparticles and its antioxidant and catalytic activity. Chem. Pap. 77, 7099–7111 (2023). https://doi.org/10.1007/s11696-023-03001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-03001-0

Keywords

Navigation