Skip to main content

Advertisement

Log in

In vitro assessment of antioxidant capacity and phenolic contents of some lentil (Lens culinaris L.) cultivars commonly consumed in Algeria

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Lentil (Lens culinaris L.) is one of the ancient crops cultivated in the world. In addition to its nutritional value, lentil seeds have been getting growing attention for their health benefits in the human diet, by containing a wide variety of bioactive phytochemicals. The present study aims to investigate the phenolic compound composition and the antioxidant capacity of six lentil cultivars, commonly consumed in Algeria. Four varieties of whole lentils with colored seed coats (black, brown, green and white) and two cultivars of colored cotyledon dehulled lentils (red and yellow) were studied. Two solvents were used for the extraction of phenolic compounds present in the lentil seeds. Several antioxidant phytochemicals, namely total carotenoid content, total phenolic content (TPC), total flavonoid content (TFC) and total proanthocyanidin content (TPAC), were investigated. Additionally, the antioxidant capacity of the six lentil cultivars was determined using three different assays: total antioxidant activity (TAA), 1,1-diphenyl-2-picrylhydrazylradical scavenging activity (DPPH-RSA) and the ferric reducing power (FRP). The results showed that cultivar and extraction solvent had significant effect (p < 0.05) on the phenolic composition (TPC, TFC and TPAC) and the antioxidant properties (TAA, DPPH-RSA and FRP) of the lentil seeds. The whole lentils with colored seed coats (black, brown and green) were found to have the highest TPC, TFC, TPAC as well as the greatest antioxidant capacity (TAA, DPPH-RSA and FRP), especially for acidic 80% acetone extraction, compared to the colored cotyledon dehulled lentils (red and yellow). High correlations between phenolic compounds and antioxidant activities of lentil extracts were observed. These findings support that lentil extracts may be employed as a natural source of antioxidants in functional foods and provide important data for breeding or cultivating lentil cultivars with high value of bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alasalvar C, Karamać M, Amarowicz R, Shahidi F (2006) Antioxidant and antiradical activities in extracts of hazelnut kernel (Corylus avellana L.) and hazelnut green leafy cover. J Agric Food Chem 54(13):4826–4832

    Article  CAS  PubMed  Google Scholar 

  • Alma MH, Mavi A, Yildirim A, Digrak M, Hirata T (2003) Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biol Pharm Bull 26(12):1725–1729

    Article  CAS  PubMed  Google Scholar 

  • Alothman M, Bhat R, Karim A (2009) Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem 115(3):785–788

    Article  CAS  Google Scholar 

  • Alshikh N, de Camargo AC, Shahidi F (2015) Phenolics of selected lentil cultivars: antioxidant activities and inhibition of low-density lipoprotein and DNA damage. J Funct Foods 18:1022–1038

    Article  CAS  Google Scholar 

  • Amarowicz R, Estrella I, Hernández T, Dueñas M, Troszyńska A, Agnieszka K, Pegg RB (2009) Antioxidant activity of a red lentil extract and its fractions. Int J Mol Sci 10(12):5513–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amarowicz R, Estrella I, Hernández T, Robredo S, Troszyńska A, Kosińska A, Pegg RB (2010) Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem 121(3):705–711

    Article  CAS  Google Scholar 

  • Amarowicz R, Karamac M, Chavan U (2001) Influence of the extraction procedure on the antioxidative activity of lentil seed extracts in a β-carotene-linoleate model system. Grasas Aceites 52(2):89–93

    Article  CAS  Google Scholar 

  • Amarowicz R, Piskula M, Honke JA, Rudnicka B, Troszynska A, Kozlowska H (1995) Extraction of phenolic compounds from lentil seeds [Lens culinaris] with various solvents. Pol J Food Nutr Sci 4(3):53–62

    CAS  Google Scholar 

  • Amarowicz R, Troszyńska A (2003) Antioxidant activity of extract of pea and its fractions of low molecular phenolics and tannins. Pol J Food Nutr Sci 12(53):S1

    Google Scholar 

  • Amarowicz R, Troszyńska A, Pegg R (2008) Antioxidative and radical scavenging effects of phenolics from Vicia sativum. Fitoterapia 79(2):121–122

    Article  CAS  PubMed  Google Scholar 

  • Apak RA, Özyürek M, Güçlü K, Çapanoğlu E (2016) Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 64(5):997–1027

    Article  CAS  PubMed  Google Scholar 

  • Arain MA, Mei Z, Hassan F, Saeed M, Alagawany M, Shar A, Rajput I (2018) Lycopene: a natural antioxidant for prevention of heat-induced oxidative stress in poultry. Worlds Poult Sci J 74(1):89–100

    Article  Google Scholar 

  • Atienza J, Sanz M, Herguedas A, Alejos J, Jimenez J (1998) Note. β—Carotene, α—tocopherol and γ—tocopherol contents in dry legumes. Influence of cooking Nota. Contenido de β—caroteno, α—tocopherol y γ—tocopherol en legumbres secas. Influencia de la cocción. Food Sci Technol Int 4(6):437–441

    Article  CAS  Google Scholar 

  • Bhalodia NR, Nariya PB, Acharya R, Shukla V (2013) In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. Ayu 34(2):209

    Article  PubMed  PubMed Central  Google Scholar 

  • Biehler E, Alkerwi AA, Hoffmann L, Krause E, Guillaume M, Lair M-L, Bohn T (2012) Contribution of violaxanthin, neoxanthin, phytoene and phytofluene to total carotenoid intake: assessment in Luxembourg. J Food Compos Anal 25(1):56–65

    Article  CAS  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200

    Article  CAS  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333

    Article  CAS  PubMed  Google Scholar 

  • Busambwa K, Miller-Cebert R, Aboagye L, Dalrymple L, Boateng J, Shackelford L, Verghese M (2014) Inhibitory effect of lentils, green split and yellow peas (sprouted and non-sprouted) on azoxymethane-induced aberrant crypt foci in Fisher 344 male rats. Int J Cancer Res (USA) 10(1):27–36

    Article  Google Scholar 

  • Camero CM, Germanò MP, Rapisarda A, D’Angelo V, Amira S, Benchikh F, De Leo M (2018) Anti-angiogenic activity of iridoids from Galium tunetanum. Rev Bras Farmacogn 28:374–377

    Article  CAS  Google Scholar 

  • Chuarienthong P, Lourith N, Leelapornpisid P (2010) Clinical efficacy comparison of anti-wrinkle cosmetics containing herbal flavonoids. Int J Cosmet Sci 32(2):99–106

    Article  CAS  PubMed  Google Scholar 

  • Danihelová M, Viskupicová J, Sturdik E (2012) Lipophilization of flavonoids for their food, therapeutic and cosmetic applications. Acta Chim Slovaca 5(1):59

    Article  Google Scholar 

  • Didinger C, Thompson HJ (2022) The role of pulses in improving human health: a review. Legume Sci 4:e147

    Article  Google Scholar 

  • Duenas M, Hernandez T, Estrella I (2006) Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem 98(1):95–103

    Article  CAS  Google Scholar 

  • Dueñas M, Hernández T, Estrella I (2002) Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.). Eur Food Res Technol 215(6):478–483

    Article  Google Scholar 

  • Dueñas M, Sun B, Hernández T, Estrella I, Spranger MI (2003) Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.). J Agric Food Chem 51(27):7999–8004

    Article  PubMed  Google Scholar 

  • Dutta D, Chaudhuri UR, Chakraborty R (2005) Structure, health benefits, antioxidant property and processing and storage of carotenoids. Afr J Biotechnol 4(13):1510–1520

    CAS  Google Scholar 

  • El-Qudah JM (2014) Estimation of carotenoid contents of selected mediterranean legumes by HPLC. World J Med Sci 10(1):89–93

    CAS  Google Scholar 

  • FAOSTAT (2020) Food and Agricultural Organization of United Nations: Economic and Social Department: the statistical division. Retrievable from https://www.fao.org/faostat/en/#data/QCL/visualize. Accessed Aug 2022

  • Fernandez-Orozco R, Frias J, Zielinski H, Muñoz R, Piskula MK, Kozlowska H, Vidal-Valverde C (2009) Evaluation of bioprocesses to improve the antioxidant properties of chickpeas. LWT-Food Sci Technol 42(4):885–892

    Article  CAS  Google Scholar 

  • Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6(2):466–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganesan K, Xu B (2017) Polyphenol-rich lentils and their health promoting effects. Int J Mol Sci 18(11):2390

    Article  PubMed  PubMed Central  Google Scholar 

  • Geil PB, Anderson JW (1994) Nutrition and health implications of dry beans: a review. J Am Coll Nutr 13(6):549–558

    Article  CAS  PubMed  Google Scholar 

  • Gharachorloo M, Tarzi BG, Baharinia M, Hemaci AH (2012) Antioxidant activity and phenolic content of germinated lentil (Lens culinaris). J Med Plants Res 6(30):4562–4566

    CAS  Google Scholar 

  • González‐Sarrías A, Tomás‐Barberán FA, García‐Villalba R (2020) Structural diversity of polyphenols and distribution in foods. In: Dietary polyphenols: their metabolism and health effects, pp 1–29

  • Górniak I, Bartoszewski R, Króliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 18:241–272

    Article  Google Scholar 

  • Hagerman A (2000) Quantification of tannins in tree foliage: a laboratory manual for the FAO/IAEA co-ordinated research project on" The use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanninferous tree foliage. http://www.iaea.org/programmes/nafa/d3/crp/pubd31022manual-tannin.pdf.

  • Han H, Baik BK (2008) Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing. Int J Food Sci Technol 43(11):1971–1978

    Article  CAS  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856

    Article  CAS  PubMed  Google Scholar 

  • Irakli M, Kargiotidou A, Tigka E, Beslemes D, Fournomiti M, Pankou C, Vlachostergios DN (2021) Genotypic and environmental effect on the concentration of phytochemical contents of lentil (Lens culinaris L.). Agronomy 11(6):1154

    Article  CAS  Google Scholar 

  • Johnson CR, Thavarajah P (2013) The influence of phenolic and phytic acid food matrix factors on iron bioavailability potential in 10 commercial lentil genotypes (Lens culinaris L.). J Food Compos Anal 31(1):82–86

    Article  CAS  Google Scholar 

  • Johnson N, Johnson CR, Thavarajah P, Kumar S, Thavarajah D (2020) The roles and potential of lentil prebiotic carbohydrates in human and plant health. Plants People, Planet 2(4):310–319

    Article  Google Scholar 

  • Kallithraka S, Garcia-Viguera C, Bridle P, Bakker J (1995) Survey of solvents for the extraction of grape seed phenolics. Phytochem Anal 6(5):265–267

    Article  CAS  Google Scholar 

  • Kamboh A, Arain MA, Mughal MJ, Zaman A, Arain Z, Soomro A (2015) Flavonoids: health promoting phytochemicals for animal production-a review. J Anim Health Prod 3(1):6–13

    Article  Google Scholar 

  • Kandlakunta B, Rajendran A, Thingnganing L (2008) Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin. Food Chem 106(1):85–89

    Article  CAS  Google Scholar 

  • Karioti A, Hadjipavlou-Litina D, Mensah ML, Fleischer TC, Skaltsa H (2004) Composition and antioxidant activity of the essential oils of Xylopia aethiopica (Dun) A. Rich.(Annonaceae) leaves, stem bark, root bark, and fresh and dried fruits, growing in Ghana. J Agric Food Chem 52(26):8094–8098

    Article  CAS  PubMed  Google Scholar 

  • Kocic B, Kitic D, Brankovic S (2013) Dietary flavonoid intake and colorectal cancer risk: evidence from human population studies. J BUON 18(1):34–43

    CAS  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16

    Article  Google Scholar 

  • Lanzendörfer G, Stäb F, Untiedt S (2002) Cosmetic and dermatological preparations with flavonoids. In: US Patent 6,423,747

  • Li X, Liu J, Chang Q, Zhou Z, Han R, Liang Z (2021) Antioxidant and antidiabetic activity of proanthocyanidins from Fagopyrum dibotrys. Molecules 26(9):2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiani G, Periago Castón MJ, Catasta G, Toti E, Cambrodón IG, Bysted A, Valoti M (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53(S2):S194–S218

    Article  PubMed  Google Scholar 

  • Maleki SJ, Crespo JF, Cabanillas B (2019) Anti-inflammatory effects of flavonoids. Food Chem 299:125124

    Article  CAS  PubMed  Google Scholar 

  • Meléndez-Martínez AJ, Mapelli-Brahm P, Stinco CM (2018) The colourless carotenoids phytoene and phytofluene: from dietary sources to their usefulness for the functional foods and nutricosmetics industries. J Food Compos Anal 67:91–103

    Article  Google Scholar 

  • Meléndez-Martínez AJ (2019) An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Mol Nutr Food Res 63(15):1801045

    Article  Google Scholar 

  • Mirali M, Ambrose SJ, Wood SA, Vandenberg A, Purves RW (2014) Development of a fast extraction method and optimization of liquid chromatography–mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J Chromatogr B 969:149–161

    Article  CAS  Google Scholar 

  • Mokrani A, Madani K (2016) Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep Purif Technol 162:68–76

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44(6):307–315

    Article  CAS  Google Scholar 

  • Paramita V, Kusumayanti H, Amalia R, Leviana W, Nisa QA (2018) Application of Flavonoid and Anthocyanin Contents from Rambutan (Nephelium lappaceum) Peel as Natural Dyes on Cotton Fabric. Adv Sci Lett 24(12):9853–9855

    Article  Google Scholar 

  • Parikh B, Patel V (2018) Total phenolic content and total antioxidant capacity of common Indian pulses and split pulses. J Food Sci Technol 55(4):1499–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson CA, Curran J, Der T (2017) Effect of processing on antinutrient compounds in pulses. Cereal Chem 94(1):2–10

    Article  CAS  Google Scholar 

  • Pérez-Gálvez A, Viera I, Roca M (2020) Carotenoids and chlorophylls as antioxidants. Antioxidants 9(6):505

    Article  PubMed  PubMed Central  Google Scholar 

  • Petti S, Scully C (2009) Polyphenols, oral health and disease: a review. J Dent 37(6):413–423

    Article  CAS  PubMed  Google Scholar 

  • Porter LJ, Hrstich LN, Chan BG (1985) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25(1):223–230

    Article  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341

    Article  CAS  PubMed  Google Scholar 

  • Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Trotin F (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72(1–2):35–42

    Article  CAS  PubMed  Google Scholar 

  • Rauf A, Imran M, Abu-Izneid T, Patel S, Pan X, Naz S, Suleria HAR (2019) Proanthocyanidins: a comprehensive review. Biomed Pharmacother 116:108999

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez De Luna SL, Ramírez-Garza R, Serna Saldívar SO (2020) Environmentally friendly methods for flavonoid extraction from plant material: impact of their operating conditions on yield and antioxidant properties. Sci World J 2020:1–38

    Article  Google Scholar 

  • Sahin K, Orhan C, Akdemir F, Tuzcu M, Ali S, Sahin N (2011) Tomato powder supplementation activates Nrf-2 via ERK/Akt signaling pathway and attenuates heat stress-related responses in quails. Anim Feed Sci Technol 165(3–4):230–237

    Article  CAS  Google Scholar 

  • Saini RK, Keum Y-S (2018) Significance of genetic, environmental, and pre-and postharvest factors affecting carotenoid contents in crops: a review. J Agric Food Chem 66(21):5310–5324

    Article  CAS  PubMed  Google Scholar 

  • Šamec D, Karalija E, Šola I, Vujčić Bok V, Salopek-Sondi B (2021) The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants 10(1):118

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin-like compounds–nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80(7):1094–1117

    Article  CAS  Google Scholar 

  • Schneider AV (2002) Overview of the market and consumption of puises in Europe. Br J Nutr 88(S3):243–250

    Article  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158

    Article  CAS  Google Scholar 

  • Talcott S, Howard L (1999) Phenolic autoxidation is responsible for color degradation in processed carrot puree. J Agric Food Chem 47(5):2109–2115

    Article  CAS  PubMed  Google Scholar 

  • Troszynska A, Bednarska A, Latosz A, Kozlowska H (1997) Polyphenolic compounds in the seed coat of legume. Pol J Food Nutr Sci 6(3):37–45

    CAS  Google Scholar 

  • Villela A, van Vuuren MS, Willemen HM, Derksen GC, van Beek TA (2019) Photo-stability of a flavonoid dye in presence of aluminium ions. Dye Pigment 162:222–231

    Article  CAS  Google Scholar 

  • Xu B, Chang SK (2008) Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes. Food Chem 110(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Yuan S, Chang S (2007a) Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J Food Sci 72(2):S167–S177

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Yuan S, Chang S (2007b) Comparative studies on the antioxidant activities of nine common food legumes against copper-induced human low-density lipoprotein oxidation in vitro. J Food Sci 72(7):S522–S527

    Article  CAS  PubMed  Google Scholar 

  • Xu BJ, Chang S (2007) A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72(2):S159–S166

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Huang T, Tian B, Zhan J (2020) Advances in biosynthesis and biological functions of proanthocyanidins in horticultural plants. Foods 9(12):1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Deng Z, Ramdath DD, Tang Y, Chen PX, Liu R, Tsao R (2015) Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem 172:862–872

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Deng Z, Tang Y, Chen P, Liu R, Ramdath DD, Tsao R (2014) Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food chem 161:296–304

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Peng H, Deng Z, Tsao R (2018) Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. J Food Bioact 1:93–103–193–103

  • Zhao K, Yuan Y, Lin B, Miao Z, Li Z, Guo Q, Lu N (2018) LW-215, a newly synthesized flavonoid, exhibits potent anti-angiogenic activity in vitro and in vivo. Gene 642:533–541

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Yuan X, Wang J, Feng Y, Ji F, Li Z, Bian J (2019) A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg Med Chem 27(5):677–685

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Algerian Ministry of Higher Education and Scientific Research for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Mokrani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrani, A. In vitro assessment of antioxidant capacity and phenolic contents of some lentil (Lens culinaris L.) cultivars commonly consumed in Algeria. Chem. Pap. 77, 4567–4578 (2023). https://doi.org/10.1007/s11696-023-02807-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-02807-2

Keywords

Navigation