Skip to main content
Log in

High-performance system for partial nitritation of reject water resistant to temperature fluctuation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A sequencing batch reactor (SBR) applying partial nitritation for reject water treatment was operated for 330 days at a laboratory scale. The system was repeatedly exposed to sudden temperature drops from 24 to 17 °C. The nitrogen loading rate (NLR) was increased incrementally from 0.4 to 1.5 kg/(m3 day) with the aim to evaluate temperature stability of the process at different NLR value. Total nitrite nitrogen (TNIIIN) represented 94–99% of oxidised nitrogen in the effluent throughout the entire operation of the reactor. It was found that the pH profile during the SBR cycle, nitrogen removal efficiency and concentration of N-species in the effluent did not show significant changes following temperature decreases occurring within the entire applied range of the NLR. Simultaneously, the nitrogen removal rate increased proportionally with the NLR where the nitrogen oxidation efficiency reached 48–58% regardless of actual temperature and NLR. These observations clearly demonstrate the temperature stability of applied partial nitritation system during the tested temperature fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J WPCF 5:835–852

    Google Scholar 

  • Blackburne R, Yuan Z, Keller J (2008) Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Res 8–9:2166–2176. doi:10.1016/j.watres.2007.11.029

    Article  Google Scholar 

  • Claros J, Jiménez E, Aguado D, Ferrer J, Seco A, Serralta J (2013) Effect of pH and HNO2 concentration on the activity of ammonia-oxidizing bacteria in a partial nitritation reactor. Water Sci Technol 11:2587–2594. doi:10.2166/wst.2013.132

    Article  Google Scholar 

  • Daija L, Selberg A, Rikmann E, Zekker I, Tenno T, Tenno T (2016) The influence of lower temperature, influent fluctuations and long retention time on the performance of an upflow mode laboratory-scale septic tank. Desalination Water Treat. doi:10.1080/19443994.2015.1094421

    Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 11:5273–5284. doi:10.1128/AEM.67.11.5273-5284.2001

    Article  Google Scholar 

  • Daims H, Lucker S, Wagner M (2006) Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213. doi:10.1111/j.1462-2920.2005.00880.x

    Article  CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AE, Franson MAH (1995) Standard methods for examination of water and wastewater. APHA, Washington DC, p 826. ISBN:0875532233

    Google Scholar 

  • Ganigué R, Gabarró J, Sànchez-Melsió A, Ruscalleda M, López H, Vila X, Colprim J, Balaguer MD (2009) Long-term operation of a partial nitritation pilot plant treating leachate with extremely high ammonium concentration prior to an anammox process. Bioresour Technol 23:5624–5632. doi:10.1016/j.biortech.2009.06.023

    Article  Google Scholar 

  • Ge S, Peng Y, Qiu S, Zhu A, Ren N (2014) Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process. Water Res 5:95–105. doi:10.1016/j.watres.2014.01.058

    Article  Google Scholar 

  • Hao X, Heijnen J, van Loosdrecht MCM (2002) Model-based evaluation of temperature and inflow variantions on a partial nitrification-ANAMMOX biofilm process. Water Res 19:4839–4849. doi:10.1016/S0043-1354(02)00219-1

    Article  Google Scholar 

  • Hellinga C, Schellen AAJC, Mulder JW, van Loosdrecht MCM, Heijnen JJ (1998) The SHARON process: an innovative method for nitrogen removal from ammonium- rich waste water. Water Sci Technol 9:135–142

    Google Scholar 

  • Henze M, van Loosdrecht MCM, Ekama G, Brdjanovic D (2008) Biological wastewater treatment: principles, modelling and design. IWA Publishing, London, p 528. ISBN:9781843391883

    Google Scholar 

  • Hrncirova H, Svehla P, Radechovsky J, Pacek L, Balik J (2017) The influence of temperature fluctuation on the stability of short-cut nitrification applied for reject water treatment. Environment Protection Engineering (in press)

  • Hu TY, Lotti T, de Kreuk M, Kleerebezem M, van Loosdrecht M, Kruit J, Jetten MSM, Kartal B (2013) Nitrogen removal by a nitritation-anammox bioreactor at low temperature. Appl Environ Microbiol 7:2807–2812. doi:10.1128/AEM.03987-12

    Article  Google Scholar 

  • Jenicek P, Svehla P, Zabranska J, Dohanyos M (2004) Factors affecting nitrogen removal by nitritation/denitritation. Water Sci Technol 5–6:73–79

    Google Scholar 

  • Kim JH, Guo X, Park HS (2008) Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochem 2:154–160. doi:10.1016/j.procbio.2007.11.005

    Article  Google Scholar 

  • Kouba V, Catrysse M, Stryjova H, Jonatova I, Volcke E, Svehla P, Bartacek J (2014) The impact of influent total ammonium nitrogen concentration on nitrite oxidizing bacteria inhibition in moving bed biofilm reactor. Water Sci Technol 6:1227–1233. doi:10.2166/wst.2013.757

    Article  Google Scholar 

  • Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences—an application survey. Water Res 55:292–303. doi:10.1016/j.watres.2014.02.032

    Article  CAS  Google Scholar 

  • Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analysing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 6:2156–2162

    Google Scholar 

  • Mosqura-Corral A, Gonzales F, Campos JL, Mendez R (2005) Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds. Process Biochem 9:3109–3118. doi:10.1016/j.procbio.2005.03.042

    Article  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 3:177–183

    Article  Google Scholar 

  • Nielsen, P. H., Daims, H. & Lemmer, H. (2009). FISH handbook for biological wastewater treatment, London

  • Pacek L, Svehla P, Bartacek J, Radechovsky J, Hrncirova H, Shejbalova S, Balik J, Jenicek P (2015) Direct and indirect effects of oxygen limitation on nitrification process applied to reject water treatment. Desalination Water Treat 3:598–607. doi:10.1080/19443994.2014.950336

    Article  Google Scholar 

  • Pambrun V, Paul L, Spérandio M (2008) Control and modelling of partial nitrification of effluents with high ammonia concentrations in sequencing batch reactor. Chem Eng Process 3:323–329. doi:10.1016/j.cep.2007.01.028

    Article  Google Scholar 

  • Park S, Bae W (2009) Modelling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process Biochem 6:631–640. doi:10.1016/j.procbio.2009.02.002

    Article  Google Scholar 

  • Persson F, Sultana R, Suarez M, Hermansson M, Plaza E, Wilen BM (2014) Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation–anammox at low temperatures. Bioresour Technol 2:267–273. doi:10.1016/j.biortech.2013.12.062

    Article  Google Scholar 

  • Rodríguez DC, Pino N, Peňuela G (2011) Monitoring the removal of nitrogen by applying a nitrification–denitrification process in a sequencing batch reactor (SBR). Bioresour Technol 3:2316–2321. doi:10.1016/j.biortech.2010.10.082

    Article  Google Scholar 

  • Ruiz G, Jeison D, Chamy R (2003) Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res 6:1371–1377. doi:10.1016/S0043-1354(02)00475-X

    Article  Google Scholar 

  • Sun HW, Bai Y, Peng YZ, Xie HG, Shi XN (2013) Achieving nitrogen removal via nitrite pathway from urban landfill leachate using the synergetic inhibition of free ammonia and free nitrous acid on nitrifying bacteria activity. Water Sci Technol 9:2035–2041. doi:10.2166/wst.2013.432

    Article  Google Scholar 

  • Svehla P, Bartacek J, Pacek L, Hrncirova H, Radechovsky J, Hanc A, Jenicek P (2014) Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding stratégy. Chem Pap 7:871–878. doi:10.2478/s11696-014-0538-6

    Google Scholar 

  • Svehla P, Radechovsky J, Hrncirova H, Pacek L, Bartacek J (2015) Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems. Chem Pap 7:921–929. doi:10.1515/chempap-2015-0095

    Google Scholar 

  • Torà JA, Lafuente J, Garcia-Belinchón C, Bouchy L, Carrera J, Baeza JA (2014) High-throughput nitritation of reject water with a novel ammonium control loop: stable effluent generation for anammox or heterothrophic denitritation. Chem Eng J 24:265–271. doi:10.1016/j.cej.2013.11.056

    Article  Google Scholar 

  • Turk O, Mavinic DS (1989) Stability of nitrite build-up in an activated sludge system. J WPCF 8:1440–1448

    Google Scholar 

  • Vadivelu VM, Keller J, Yuan ZG (2006) Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture. Biotechnol Bioeng 9:830–839. doi:10.1002/bit.21018

    Article  Google Scholar 

  • Vadivelu VM, Keller J, Yuan Z (2007) Effect of free ammonia on respiration and growth process of an enriched Nitrobacter culture. Water Res 4:826–834. doi:10.1016/j.watres.2006.11.030

    Article  Google Scholar 

  • van Dongen U, Jetten MSM, van Loosdrecht MCM (2001) The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Sci Technol 12:153–160

    Google Scholar 

  • van Kempen R, Mulder JW, Uijterlinde CA, Loosdrecht MCM (2001) Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci Technol 1:145–152

    Google Scholar 

  • Villaverde S, Fdz-Polanco F, Garcia PA (2000) Nitrifying biofilms acclimation to free ammonia in submerged biofilters, start-up influence. Water Res 2:602–610. doi:10.1016/S0043-1354(99)00175-X

    Article  Google Scholar 

  • Volcke EIP, Loccufier M, Vanrolleghem PA, Noldus EJL (2006) Existence, uniqueness and stability of the equilibrium points of a SHARON bioreactor model. J Process Control 10:1003–1012. doi:10.1016/j.jprocont.2006.08.004

    Article  Google Scholar 

  • Wagner M, Rath MG, Koops HP, Flood J, Amann R (1996) In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci Technol 1–2:237–244

    Google Scholar 

  • Wei D, Xue X, Yan L, Sun M, Zhang G, Shi L, Du B (2014) Effect of influent ammonium concentration on the shift of full nitritation to partial nitrification in a sequencing batch reactor at ambient temperature. Chem Eng J 1:19–26. doi:10.1016/j.cej.2013.09.005

    Article  Google Scholar 

  • Yang J, Zhang L, Daisuke H, Takahiro S, Ma Y, Li Z, Furukawa K (2010) High rate partial nitrification treatment of reject wastewater. J Biosci Bioeng 4:436–440. doi:10.1016/j.jbiosc.2010.05.003

    Article  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Saluste A, Tomingas M, Menert A, Loorits L, Lemmikso V, Tenno T (2012) Achieving nitritation and anammox enrichment in single moving-bed biofilm reactor treating reject water. Environ Technol 4–6:703–710. doi:10.1080/09593330.2011.588962

    Article  Google Scholar 

  • Zekker I, Rikmann E, Tenno T et al (2014) Start-up of low temperature anammox in UASB from mesophilic yeast factory anaerobic tank inoculum. Environ Technol 36:214–225. doi:10.1080/09593330.2014.941946

    Article  Google Scholar 

  • Zekker I, Rikmann E, Mandel A et al (2016) Step—wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9 °C in short- term anammox biofilm tests. Environ Technol 15:1933–1946. doi:10.1080/09593330.2015.1135995

    Article  Google Scholar 

  • Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng WJ (2011) The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res 10:4672–4682. doi:10.1016/j.watres.2011.06.025

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the the University-wide internal grant agency, CIGA under Grant number 20152013 and by Ministry of Agriculture of the Czech Republic under NAZV project No. QK1710176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Radechovska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radechovska, H., Svehla, P., Radechovsky, J. et al. High-performance system for partial nitritation of reject water resistant to temperature fluctuation. Chem. Pap. 71, 1657–1668 (2017). https://doi.org/10.1007/s11696-017-0156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0156-1

Keywords

Navigation