Skip to main content

Advertisement

Log in

An Imbalance of Pathophysiologic Factors in Late Postprandial Hypoglycemia Post Bariatric Surgery: A Narrative Review

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

With a rise in obesity and more patients opting for bariatric surgery, it becomes crucial to understand associated complications like postprandial hypoglycemia (PPH). After bariatric surgery, significant changes are seen in insulin sensitivity, beta cell function, glucagon-like peptide 1 (GLP-1) levels, the gut microbiome, and bile acid metabolism. And in a small subset of patients, exaggerated imbalances in these functional and metabolic processes lead to insulin–glucose mismatch and hypoglycemia. The main treatment for PPH involves dietary modifications. For those that do not respond, medications or surgical interventions are considered to reverse some of the imbalances. We present a few case reports of patients that safely tolerated GLP-1 agonists. However, larger randomized control trials are needed to further characterize PPH and understand its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hales CM, Carroll MD, Fryar CD, et al. Prevalence of obesity and severe obesity among adults United States 2017-2018. NCHS Data Brief. 2020;360:1–8. Available from: https://pubmed.ncbi.nlm.nih.gov/32487284/.

    Google Scholar 

  2. https://www.cdc.gov/ [internet]. United States: prevalence of obesity and severe obesity among adults; 2020 [cited 2022 June 3]. Available from https://www.cdc.gov/nchs/products/databriefs/db360.htm

  3. Wittgrove AC, Clark GW. Laparoscopic gastric bypass, Roux-en-Y- 500 patients: technique and results, with 3-60 month follow-up. Obes Surg. 2000;10(3):233–9. Available from: https://pubmed.ncbi.nlm.nih.gov/10929154/

    Article  CAS  PubMed  Google Scholar 

  4. Bienvenot R, Sirveaux MA, Nguyen-Thi PL, et al. Symptomatic hypoglycemia after gastric bypass: incidence and predictive factors in a cohort of 1,138 consecutive patients. Obesity (Silver Spring). 2021;29(4):681–8. Available from: https://pubmed.ncbi.nlm.nih.gov/33608995/

    Article  CAS  PubMed  Google Scholar 

  5. Marsk R, Jonas E, Rasmussen F, et al. Nationwide cohort study of post-gastric bypass hypoglycaemia including 5,040 patients undergoing surgery for obesity in 1986-2006 in Sweden. Diabetologia. 2010;53(11):2307–11. Available from: https://pubmed.ncbi.nlm.nih.gov/20495972/

    Article  CAS  PubMed  Google Scholar 

  6. Sarwar H, Chapman 3rd WH, Pender JR, et al. Hypoglycemia after Roux-en-Y gastric bypass: the BOLD experience. Obes Surg. 2014;24(7):1120–4. Available from: https://pubmed.ncbi.nlm.nih.gov/24737312/

    Article  PubMed  Google Scholar 

  7. Kassem MA, Durda MA, Stoicea N, et al. The impact of bariatric surgery on type 2 diabetes mellitus and the management of hypoglycemic events. Front Endocrinol (Lausanne). 2017;8:37. Available from: https://pubmed.ncbi.nlm.nih.gov/28298900/

    Article  PubMed  PubMed Central  Google Scholar 

  8. Malik S, Mitchell JE, Steffen K, et al. Recognition and management of hyperinsulinemic hypoglycemia after bariatric surgery. Obes Res Clin Pract. 2016;10(1):1–14. Available from: https://pubmed.ncbi.nlm.nih.gov/26522879/

    Article  PubMed  Google Scholar 

  9. Dirksen C, Damgaard M, Bojsen-Møller KN, et al. Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass. Neurogastroenterol Motil. 2013;25(4):346–e255. Available from: https://pubmed.ncbi.nlm.nih.gov/23360316/

    Article  CAS  PubMed  Google Scholar 

  10. Cavin JB, Couvelard A, Lebtahi R, et al. Differences in alimentary glucose absorption and intestinal disposal of blood glucose after Roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology. 2016;150(2):454–64.e9. Available from: https://pubmed.ncbi.nlm.nih.gov/26481855/

    Article  CAS  PubMed  Google Scholar 

  11. Wang G, Agenor K, Pizot J, et al. Accelerated gastric emptying but no carbohydrate malabsorption 1 year after gastric bypass surgery (GBP) [published correction appears in Obes Surg. 2013 Jul;23(7):1016]. Obes Surg. 2012;22(8):1263–7. Available from: https://pubmed.ncbi.nlm.nih.gov/22527599/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chondronikola M, Harris LL, Klein S. Bariatric surgery and type 2 diabetes: are there weight loss-independent therapeutic effects of upper gastrointestinal bypass? J Intern Med. 2016;280(5):476–86. Available from: https://pubmed.ncbi.nlm.nih.gov/27739136/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 2006;103(4):1006–11. Available from: https://pubmed.ncbi.nlm.nih.gov/16410358/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salehi M, Gastaldelli A, D'Alessio DA. Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology. 2014;146(3):669–680.e2. Available from: https://pubmed.ncbi.nlm.nih.gov/24315990/

    Article  CAS  PubMed  Google Scholar 

  15. Botros N, Rijnaarts I, Brandts H, et al. Effect of carbohydrate restriction in patients with hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass. Obes Surg. 2014;24(11):1850–5. Available from: https://pubmed.ncbi.nlm.nih.gov/24902654/

    Article  PubMed  Google Scholar 

  16. Eisenberg D, Azagury DE, Ghiassi S, et al. ASMBS position statement on postprandial hyperinsulinemic hypoglycemia after bariatric surgery. Surg Obes Relat Dis. 2017;13(3):371–8. Available from: https://pubmed.ncbi.nlm.nih.gov/28110984/

    Article  PubMed  Google Scholar 

  17. Kandel D, Bojsen-Møller KN, Svane MS, et al. Mechanisms of action of a carbohydrate-reduced, high-protein diet in reducing the risk of postprandial hypoglycemia after Roux-en-Y gastric bypass surgery. Am J Clin Nutr. 2019;110(2):296–304. Available from: https://pubmed.ncbi.nlm.nih.gov/30624666/

    Article  PubMed  Google Scholar 

  18. Valderas JP, Ahuad J, Rubio L, et al. Acarbose improves hypoglycaemia following gastric bypass surgery without increasing glucagon-like peptide 1 levels. Obes Surg. 2012;22(4):582–6. Available from: https://pubmed.ncbi.nlm.nih.gov/22161170/

    Article  PubMed  Google Scholar 

  19. Quan Y, Barszczyk A, Feng ZP, et al. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin. 2011;32(6):765–80. Available from: https://pubmed.ncbi.nlm.nih.gov/21602835/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Komatsu Y, Nakamura A, Takihata M, et al. Safety and tolerability of diazoxide in Japanese patients with hyperinsulinemic hypoglycemia. Endocr J. 2016;63(3):311–4. Available from: https://pubmed.ncbi.nlm.nih.gov/26598136/

    Article  CAS  PubMed  Google Scholar 

  21. Tharakan G, Behary P, Wewer Albrechtsen NJ, et al. Roles of increased glycaemic variability, GLP-1 and glucagon in hypoglycaemia after Roux-en-Y gastric bypass. Eur J Endocrinol. 2017;177(6):455–64. Available from: https://pubmed.ncbi.nlm.nih.gov/28855269/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Craig CM, Lamendola C, Holst JJ, et al. The use of gastrostomy tube for the long-term remission of hyperinsulinemic hypoglycemia after Roux-en-y gastric bypass: a case report. AACE Clinical Case Reports. 2015;1(2):e84–7. Available from: https://www.aaceclinicalcasereports.com/article/S2376-0605(20)30224-8/fulltext

    Article  Google Scholar 

  23. Davis DB, Khoraki J, Ziemelis M, et al. Roux en Y gastric bypass hypoglycemia resolves with gastric feeding or reversal: confirming a non-pancreatic etiology. Mol Metab. 2018;9:15–27. Available from: https://pubmed.ncbi.nlm.nih.gov/29449181/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rao BB, Click B, Eid G, et al. Management of refractory noninsulinoma pancreatogenous hypoglycemia syndrome with gastric bypass reversal: a case report and review of the literature. Case Rep Endocrinol. 2015;2015:1–4. Available from: https://pubmed.ncbi.nlm.nih.gov/26523235/

    Article  Google Scholar 

  25. Qvigstad E, Gulseth HL, Risstad H, et al. A novel technique of Roux-en-Y gastric bypass reversal for postprandial hyperinsulinemic hypoglycaemia: a case report. Int J Surg Case Rep. 2016;21:91–4. Available from: https://pubmed.ncbi.nlm.nih.gov/26957187/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tack J, Arts J, Caenepeel P, et al. Pathophysiology, diagnosis and management of postoperative dumping syndrome. Nat Rev Gastroenterol Hepatol. 2009;6(10):583–90. Available from: https://pubmed.ncbi.nlm.nih.gov/19724252/

    Article  PubMed  Google Scholar 

  27. Tack J, Deloose E. Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. Best Pract Res Clin Gastroenterol. 2014;28(4):741–9. Available from: https://pubmed.ncbi.nlm.nih.gov/25194187/

    Article  CAS  PubMed  Google Scholar 

  28. Kindt S, Tack J. Impaired gastric accommodation and its role in dyspepsia. Gut. 2006;55(12):1685–91. Available from: https://pubmed.ncbi.nlm.nih.gov/16854999/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vecht J, Masclee A, Lamers C. The dumping syndrome. Current insights into pathophysiology, diagnosis and treatment. Scand. J. Gastroenterol. 1997;223:21–7. Available from: https://pubmed.ncbi.nlm.nih.gov/9200302/

    CAS  Google Scholar 

  30. Nor Hanipah Z, Punchai S, Birriel TJ, et al. Clinical features of symptomatic hypoglycemia observed after bariatric surgery. Surg Obes Relat Dis. 2018;14(9):1335–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30001888/

    Article  PubMed  Google Scholar 

  31. Roslin M, Damani T, Oren J, et al. Abnormal glucose tolerance testing following gastric bypass demonstrates reactive hypoglycemia. Surg Endosc. 2011;25(6):1926–32. Available from: https://pubmed.ncbi.nlm.nih.gov/21184112/

    Article  PubMed  Google Scholar 

  32. Emous M, Ubels F, van Beek AP. Diagnostic tools for post-gastric bypass hypoglycemia. Obes Rev. 2015;16(10):843–56. Available from: https://pubmed.ncbi.nlm.nih.gov/26315925/

    Article  CAS  PubMed  Google Scholar 

  33. Kefurt R, Langer FB, Schindler K, et al. Hypoglycemia after Roux-En-Y gastric bypass: detection rates of continuous glucose monitoring (CGM) versus mixed meal test. Surg Obes Relat Dis. 2015;11(3):564–9. Available from: https://pubmed.ncbi.nlm.nih.gov/25737101/

    Article  PubMed  Google Scholar 

  34. Salehi M, Vella A, McLaughlin T, et al. Hypoglycemia after gastric bypass surgery: current concepts and controversies. J Clin Endocrinol Metab. 2018;103(8):2815–26. Available from: https://pubmed.ncbi.nlm.nih.gov/30101281/

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mulla CM, Storino A, Yee EU, et al. Insulinoma after bariatric surgery: diagnostic dilemma and therapeutic approaches. Obes Surg. 2016;26(4):874–81. Available from: https://pubmed.ncbi.nlm.nih.gov/26846121/

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zagury L, Moreira RO, Guedes EP, et al. Insulinoma misdiagnosed as dumping syndrome after bariatric surgery. Obes Surg. 2004;14(1):120–3. Available from: https://pubmed.ncbi.nlm.nih.gov/14980046/

    Article  PubMed  Google Scholar 

  37. Halperin F, Patti ME, Skow M, et al. Continuous glucose monitoring for evaluation of glycemic excursions after gastric bypass. J Obes. 2011;2011:1–7. Available from: https://pubmed.ncbi.nlm.nih.gov/21331295/.

    Article  Google Scholar 

  38. Caumo A, Luzi L. First-phase insulin secretion: does it exist in real life? Considerations on shape and function. Am J Physiol Endocrinol Metab. 2004;287(3):E371–85. Available from: https://pubmed.ncbi.nlm.nih.gov/15308473/

    Article  CAS  PubMed  Google Scholar 

  39. Cerasi E, Luft R. The plasma insulin response to glucose infusion in healthy subjects and in diabetes mellitus. Acta Endocrinol (Copenh). 1967;55(2):278–304. Available from: https://pubmed.ncbi.nlm.nih.gov/5338206/

    CAS  PubMed  Google Scholar 

  40. Curry DL, Bennett LL, Grodsky GM. Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology. 1968;83(3):572–84. Available from: https://pubmed.ncbi.nlm.nih.gov/4877098/

    Article  CAS  PubMed  Google Scholar 

  41. Luzi L, DeFronzo RA. Effect of loss of first-phase insulin secretion on hepatic glucose production and tissue glucose disposal in humans. Am J Physiol. 1989;257(2 Pt 1):E241–6. Available from: https://pubmed.ncbi.nlm.nih.gov/2669517/

    CAS  PubMed  Google Scholar 

  42. Rorsman P, Renström E. Insulin granule dynamics in pancreatic beta cells. Diabetologia. 2003;46(8):1029–45. Available from: https://pubmed.ncbi.nlm.nih.gov/12879249/

    Article  CAS  PubMed  Google Scholar 

  43. Seino S, Shibasaki T, Minami K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest. 2011;121(6):2118–25. Available from: https://pubmed.ncbi.nlm.nih.gov/21633180/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chon S, Gautier JF. An update on the effect of incretin-based therapies on β-cell function and mass. Diabetes Metab J. 2016;40(2):99–114. Available from: https://pubmed.ncbi.nlm.nih.gov/27126881/

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yabe D, Seino Y. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and β cell preservation. Prog Biophys Mol Biol. 2011;107(2):248–56. Available from: https://pubmed.ncbi.nlm.nih.gov/21820006/

    Article  CAS  PubMed  Google Scholar 

  46. Schirra J, Katschinski M, Weidmann C, et al. Gastric emptying and release of incretin hormones after glucose ingestion in humans. J Clin Invest. 1996;97(1):92–103. Available from: https://pubmed.ncbi.nlm.nih.gov/8550855/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan HM, Jain R, Ahrén B, et al. Effects of increasing doses of glucagon-like peptide-1 on insulin-releasing phases during intravenous glucose administration in mice. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1126–33. Available from: https://pubmed.ncbi.nlm.nih.gov/21307364/

    Article  CAS  PubMed  Google Scholar 

  48. Saeidi N, Meoli L, Nestoridi E, et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science. 2013;341(6144):406–10. Available from: https://pubmed.ncbi.nlm.nih.gov/23888041/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Camastra S, Palumbo M, Santini F. Nutrients handling after bariatric surgery, the role of gastrointestinal adaptation. Eat Weight Disord. 2022;27(2):449–61. Available from: https://pubmed.ncbi.nlm.nih.gov/33895917/

    Article  PubMed  Google Scholar 

  50. Almby KE, Abrahamsson N, Lundqvist MH, et al. Effects of GLP-1 on counter-regulatory responses during hypoglycemia after GBP surgery. Eur J Endocrinol. 2019;181(2):161–71. Available from: https://pubmed.ncbi.nlm.nih.gov/31176298/

    Article  CAS  PubMed  Google Scholar 

  51. Jørgensen NB, Jacobsen SH, Dirksen C, et al. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with type 2 diabetes and normal glucose tolerance. Am J Physiol Endocrinol Metab. 2012;303(1):E122–31. Available from: https://pubmed.ncbi.nlm.nih.gov/22535748/

    Article  PubMed  Google Scholar 

  52. Bojsen-Møller KN, Dirksen C, Jørgensen NB, et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass. Diabetes. 2014;63(5):1725–37. Available from: https://pubmed.ncbi.nlm.nih.gov/24241533/

    Article  PubMed  Google Scholar 

  53. Martinussen C, Bojsen-Møller KN, Dirksen C, et al. Immediate enhancement of first-phase insulin secretion and unchanged glucose effectiveness in patients with type 2 diabetes after Roux-en-Y gastric bypass. Am J Physiol Endocrinol Metab. 2015;308(6):E535–44. Available from: https://pubmed.ncbi.nlm.nih.gov/25628424/

    Article  CAS  PubMed  Google Scholar 

  54. Pérez-Pevida B, Escalada J, Miras AD, et al. Mechanisms underlying type 2 diabetes remission after metabolic surgery. Front Endocrinol (Lausanne). 2019;10:641. Available from: https://pubmed.ncbi.nlm.nih.gov/31608010/

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tsilingiris D, Koliaki C, Kokkinos A. Remission of type 2 diabetes mellitus after bariatric surgery: fact or fiction? Int J Environ Res Public Health. 2019;16(17):3171. Available from: https://pubmed.ncbi.nlm.nih.gov/31480306/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dirksen C, Jørgensen NB, Bojsen-Møller KN, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia. 2012;55(7):1890–901. https://doi.org/10.1007/s00125-012-2556-7. Epub 2012 Apr 27

    Article  CAS  PubMed  Google Scholar 

  57. Gumbs AA, Modlin IM, Ballantyne GH. Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss. Obes Surg. 2005;15(4):462–73. Available from: https://pubmed.ncbi.nlm.nih.gov/15946423/

    Article  PubMed  Google Scholar 

  58. Honka H, Koffert J, Hannukainen JC, et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J Clin Endocrinol Metab. 2015;100(5):2015–23. Available from: https://pubmed.ncbi.nlm.nih.gov/25734253/

    Article  CAS  PubMed  Google Scholar 

  59. Craig CM, Lawler HM, Lee CJE, et al. PREVENT: a randomized, placebo-controlled crossover trial of avexitide for treatment of postbariatric hypoglycemia. J Clin Endocrinol Metab. 2021;106(8):e3235–48. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277203/

    Article  PubMed  PubMed Central  Google Scholar 

  60. Das SK, Roberts SB, MA MC, et al. Long-term changes in energy expenditure and body composition after massive weight loss induced by gastric bypass surgery. Am J Clin Nutr. 2003;78(1):22–30. Available from: https://pubmed.ncbi.nlm.nih.gov/12816767/

    Article  CAS  PubMed  Google Scholar 

  61. Fumes M, Tommeras K, Arum CJ, et al. Gastric bypass surgery causes body weight loss without reducing food intake in rats. Obes Surg. 2008;18(4):415–22. Available from: https://pubmed.ncbi.nlm.nih.gov/18247101/

    Article  Google Scholar 

  62. Carrasco F, Papapietro K, Csendes A, et al. Changes in resting energy expenditure and body composition after weight loss following Roux-en-Y gastric bypass. Obes Surg. 2007;17(5):608–18. Available from: https://pubmed.ncbi.nlm.nih.gov/17658019/

    Article  PubMed  Google Scholar 

  63. Bellahcene M, O’Dowd JF, Wargent ET, et al. Male mice that lack the G-protein coupled receptor GPR41 have low energy expenditure and increased body fat content. Br J Nutr. 2013;109(10):1755–64. Available from: https://pubmed.ncbi.nlm.nih.gov/23110765/

    Article  CAS  PubMed  Google Scholar 

  64. Bueter M, Lowenstein C, Olibers T, et al. Gastric Bypass increases energy expenditure in rats. Gastroenterol. 2010;138(5):1845–53. Available from: https://pubmed.ncbi.nlm.nih.gov/19931268/

    Article  Google Scholar 

  65. Meijer JL, Roderka MN, Chinburg EL, et al. Alterations in fecal short-chain fatty acids after bariatric surgery: relationship with dietary intake and weight loss. Nutrients. 2022;14(20):4243. Available from: https://pubmed.ncbi.nlm.nih.gov/36296927/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stylopoulos N, Hoppin A, Kaplan L. Roux-en-Y gastric bypass enhances energy expenditure and extends lifespan in diet-induced obese rats. Obesity. 2009;17(10):1839–47. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157127/

    Article  PubMed  Google Scholar 

  67. Nestoridi E, Kyas S, Kucharczyk J, et al. Resting energy expenditure and energetic cost of feeding are augmented after Roux-en-Y gastric bypass in obese mice. Endocrinology. 2012;153(5):2234–44. Available from: https://pubmed.ncbi.nlm.nih.gov/22416083/

    Article  CAS  PubMed  Google Scholar 

  68. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38. Available from: https://pubmed.ncbi.nlm.nih.gov/26244932/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Psichas A, Sleeth ML, Murphy K, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes. 2015;39(3):424–9. Available from: https://pubmed.ncbi.nlm.nih.gov/25109781/

    Article  CAS  Google Scholar 

  70. Christiansen C, Gabe M, Svendsen B, et al. The impact of short chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest. 2018;315(1):G53–65. Available from: https://pubmed.ncbi.nlm.nih.gov/29494208/

    Article  CAS  Google Scholar 

  71. Cariou B, van Harmelen K, Duran-Sandoval D, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem. 2006;281(16):11039–49. Available from: https://pubmed.ncbi.nlm.nih.gov/16446356/

    Article  CAS  PubMed  Google Scholar 

  72. Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329(1):386–90. Available from: https://pubmed.ncbi.nlm.nih.gov/15721318/

    Article  CAS  PubMed  Google Scholar 

  73. Zhou LY, Deng MQ, Xiao XH. Potential contribution of the gut microbiota to hypoglycemia after gastric bypass surgery. Chin Med J (Engl). 2020;133(15):1834–43. Available from: https://pubmed.ncbi.nlm.nih.gov/32649508/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Van den Broek M, de Heide LJM, Sips FLP, et al. Altered bile acid kinetics contribute to postprandial hypoglycaemia after Roux-en-Y gastric bypass surgery. Int J Obes (Lond). 2021;45(3):619–30. Available from: https://pubmed.ncbi.nlm.nih.gov/33452416/

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jonsson I, Bojsen-Møller KN, Kristiansen VB, et al. Effects of manipulating circulating bile acid concentrations on postprandial GLP-1 secretion and glucose metabolism after Roux-en-Y gastric bypass. Front Endocrinol (Lausanne). 2021;12:681116. Available from: https://pubmed.ncbi.nlm.nih.gov/34084153/

    Article  PubMed  PubMed Central  Google Scholar 

  76. Salehi M, Woods SC, D'Alessio DA. Gastric bypass alters both glucose-dependent and glucose-independent regulation of islet hormone secretion. Obesity (Silver Spring). 2015;23(10):2046–52. Available from: https://pubmed.ncbi.nlm.nih.gov/26316298/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Meier JJ, Butler AE, Galasso R, et al. Hyperinsulinemic hypoglycemia after gastric bypass surgery is not accompanied by islet hyperplasia or increased beta-cell turnover. Diabetes Care. 2006;29(7):1554–9. Available from: https://pubmed.ncbi.nlm.nih.gov/16801578/

    Article  PubMed  Google Scholar 

  78. McLaughlin T, Peck M, Holst J, et al. Reversible hyperinsulinemic hypoglycemia after gastric bypass: a consequence of altered nutrient delivery. J Clin Endocrinol Metab. 2010;95(4):1851–5. Available from: https://pubmed.ncbi.nlm.nih.gov/20133462/

    Article  CAS  PubMed  Google Scholar 

  79. Zanley E, Shah ND, Craig C, et al. Guidelines for gastrostomy tube placement and enteral nutrition in patients with severe, refractory hypoglycemia after gastric bypass. Surg Obes Relat Dis. 2021;17(2):456–65. Available from: https://pubmed.ncbi.nlm.nih.gov/33160876/

    Article  PubMed  Google Scholar 

  80. Craig C, Liu LF, Deacon C, et al. Critical role for GLP-1 in symptomatic post-bariatric hypoglycaemia. Diabetologia. 2017;60:531–40. Available from: https://link.springer.com/article/10.1007/s00125-016-4179-x#citeas

    Article  PubMed  Google Scholar 

  81. Abrahamsson N, Engström BE, Sundbom M, et al. GLP1 analogs as treatment of postprandial hypoglycemia following gastric bypass surgery: a potential new indication? Eur J Endocrinol. 2013;169(6):885–9. Available from: https://pubmed.ncbi.nlm.nih.gov/24086087/

    Article  CAS  PubMed  Google Scholar 

  82. Ahrén B, Schweizer A, Dejager S, et al. Vildagliptin enhances islet responsiveness to both hyper- and hypoglycemia in patients with type 2 diabetes. J Clin Endocrinol Metab. 2009;94(4):1236–43. Available from: https://pubmed.ncbi.nlm.nih.gov/19174497/

    Article  PubMed  Google Scholar 

  83. Øhrstrøm CC, Knop FK. A role for exogenous GLP-1 in the management of postprandial hypoglycaemia after Roux-en-Y gastric bypass? Eur J Endocrinol. 2019;181(3):C5–8. Available from: https://pubmed.ncbi.nlm.nih.gov/31370002/

    Article  PubMed  Google Scholar 

  84. Madsen MSA, Holm JB, Pallejà A, et al. Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Sci Rep. 2019;9(1):15582. Available from: https://pubmed.ncbi.nlm.nih.gov/31666597/

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kato S, Sato T, Fujita H, et al. Effects of GLP-1 receptor agonist on changes in the gut bacterium and the underlying mechanisms. Sci Rep. 2021;11(1):9167. Available from: https://pubmed.ncbi.nlm.nih.gov/33911125/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Suhl E, Anderson-Haynes SE, Mulla C, et al. Medical nutrition therapy for post-bariatric hypoglycemia: practical insights. Surg Obes Relat Dis. 2017;13(5):888–96. Available from: https://pubmed.ncbi.nlm.nih.gov/28392017/

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mordes JP, Alonso LC. Evaluation, medical therapy, and course of adult persistent hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass surgery: a case series. Endocr Pract. 2015;21(3):237–46. Available from: https://pubmed.ncbi.nlm.nih.gov/25100376/

    Article  PubMed  PubMed Central  Google Scholar 

  88. Øhrstrøm CC, Worm D, Højager A, et al. Postprandial hypoglycaemia after Roux-en-Y gastric bypass and the effects of acarbose, sitagliptin, verapamil, liraglutide and pasireotide. Diabetes Obes Metab. 2019;21(9):2142–51. Available from: https://pubmed.ncbi.nlm.nih.gov/31144430/

    Article  PubMed  Google Scholar 

  89. Drucker DJ, Holst JJ. The expanding incretin universe: from basic biology to clinical translation. Diabetologia. 2023; Available from: https://pubmed.ncbi.nlm.nih.gov/36976349/

  90. Sattar N, Lee M, Kristensen S, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9(10):653–62. Available from: https://pubmed.ncbi.nlm.nih.gov/34425083/

    Article  CAS  PubMed  Google Scholar 

  91. Strain WD, Frenkel O, James MA, et al. Effects of semaglutide on stroke subtypes in type 2 diabetes: post hoc analysis of the randomized SUSTAIN 6 and PIONEER 6. Stroke. 2022;53(9):2749–57. Available from: https://pubmed.ncbi.nlm.nih.gov/35582947/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. During MJ, Cao L, Zuzga DS, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med. 2003;9(9):1173–9. Available from: https://pubmed.ncbi.nlm.nih.gov/12925848/

    Article  CAS  PubMed  Google Scholar 

  93. Yu JH, Park SY, Lee DY, et al. GLP-1 receptor agonists in diabetic kidney disease: current evidence and future directions. Kidney Res Clin Pract. 2022;41(2):136–49. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8995488/

    Article  PubMed  PubMed Central  Google Scholar 

  94. Llewellyn DC, Logan Ellis H, Aylwin SJB, et al. The efficacy of GLP-1RAs for the management of postprandial hypoglycemia following bariatric surgery: a systematic review. Obesity (Silver Spring). 2023;31(1):20–30. Available from: https://pubmed.ncbi.nlm.nih.gov/36502288/

    Article  CAS  PubMed  Google Scholar 

  95. Ding B, Hu Y, Yuan L, et al. Effectiveness of beinaglutide in a patient with late dumping syndrome after gastrectomy: a case report. Medicine (Baltimore). 2021;100(21):e26086. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154494/

    Article  PubMed  PubMed Central  Google Scholar 

  96. de Heide LJM, Wouda SHT, Peters VJT, et al. Medical and surgical treatment of postbariatric hypoglycaemia: retrospective data from daily practice. Diabetes Obes Metab. 2023;25(3):735–47. Available from: https://pubmed.ncbi.nlm.nih.gov/36377811/

    Article  PubMed  Google Scholar 

  97. Xu Q, Zou X, You L, et al. Surgical treatment for postprandial hypoglycemia after Roux-en-Y gastric bypass: a literature review. Obes Surg. 2021;31(4):1801–9. Available from: https://link.springer.com/article/10.1007/s11695-021-05251-x

    Article  PubMed  Google Scholar 

  98. Arman GA, Himpens J, Bolckmans R, et al. Medium-term outcomes after reversal of Roux-en-Y gastric bypass. Obes Surg. 2018;28(3):781–90. Available from: https://pubmed.ncbi.nlm.nih.gov/28929425/

    Article  PubMed  Google Scholar 

  99. Ma P, Ghiassi S, Lloyd A, et al. Reversal of Roux en Y gastric bypass: largest single institution experience. Surg Obes Relat Dis. 2019;15(8):1311–6. Available from: https://pubmed.ncbi.nlm.nih.gov/31262648/

    Article  PubMed  Google Scholar 

  100. Vilallonga R, Rodríguez-Luna MR, Roriz-Silva R, et al. Reversal to normal anatomy (with sleeve gastrectomy) for severe hypoglycemia. Surg Innov. 2021;28(5):536–43. Available from: https://pubmed.ncbi.nlm.nih.gov/33381999/

    Article  PubMed  Google Scholar 

  101. Pucher PH, Lord AC, Sodergren MH, et al. Reversal to normal anatomy after failed gastric bypass: systematic review of indications, techniques, and outcomes. Surg Obes Relat Dis. 2016;12(7):1351–6. Available from: https://pubmed.ncbi.nlm.nih.gov/27256861/

    Article  PubMed  Google Scholar 

  102. Z’graggen K, Guweidhi A, Steffen R, et al. Severe recurrent hypoglycemia after gastric bypass surgery. Obes Surg. 2008;18(8):981–8. Available from: https://pubmed.ncbi.nlm.nih.gov/18438618/

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marah Alsayed Hasan.

Ethics declarations

Ethical Approval and Consent to Participate

This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

Stanley Schwartz is the advisor of Lilly Pharmaceuticals from 2022 to present. All the other authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• GLP-1 agonists show benefit in postprandial hypoglycemia after bariatric surgery.

• An exaggerated imbalance in insulin and glucose regulation exists in PPH post RYGB.

• Close glucose monitoring should be recommended in patients post RYGB.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsayed Hasan, M., Schwartz, S., McKenna, V. et al. An Imbalance of Pathophysiologic Factors in Late Postprandial Hypoglycemia Post Bariatric Surgery: A Narrative Review. OBES SURG 33, 2927–2937 (2023). https://doi.org/10.1007/s11695-023-06758-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-023-06758-1

Keywords

Navigation