Skip to main content
Log in

Characterization of mexican Opuntia ficus indica cladode and bioactive compound profile. Oxidative stress resistance and anti-adipogenic effect in Caenorhabditis elegans

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Cladodes from Opuntia ficus indica var. Atlixco serve as a valuable source of dietary fiber and bioactive compounds. This study delves into the chemical composition, total polyphenolic content, and antioxidant capacity of powdered samples at three ripening stages. Notably, cladodes at 60 days of ripening (60 d) exhibited the highest dietary fiber content, while those at 45 days of ripening (45 d) showcased superior levels of total polyphenols and antioxidant capacity, as measured by ABTS. Key minerals identified through ICP-OES included Ca, K, Mg, P, and Na, with Ca and K being more abundant. Liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS) facilitated the identification and quantification of polyphenols in 60 d cladodes. Despite their size (> 30 cm), rendering them unsuitable for commercialization, these cladodes’ extract revealed elevated proportions of piscidic and eucomic acids, along with isorhamnetin derivatives. Evaluation of oxidative stress resistance and anti-adipogenic capacity in a Caenorhabditis elegans animal model revealed that the extract from 60 d cladodes enhanced the survival rate under oxidative stress conditions and reduced fat deposition in the C. elegans intestine. These findings not only highlight the health and nutritional advantages but also inspire further research and the potential development of innovative functional products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data available upon request.

References

  1. del M. Socorro Santos Díaz, B. de la Rosa, A.-P. Héliès-Toussaint, C. Guéraud, F. Nègre-Salvayre, A., Opuntia spp.: Characterization and Benefits in Chronic Diseases. Oxid. Med. Cell. Longev., 1–17 (2017). https://doi.org/10.1155/2017/8634249

  2. M. Bautista-Justo, R.I. Pineda Torres, E. Camarena-Aguilar, G. Alanís- Guzmán, Da V.M. Mota, J.E. Barboza- Corona, El Nopal fresco como fuente de fibra y calcio en panqués. Acta Univ. 20, 11–17 (2010). https://doi.org/10.15174/au.2010.62

    Article  Google Scholar 

  3. M.I. Hernández-Urbiola, E. Pérez-Torrero, M.E. Rodríguez-García, Chemical Analysis of Nutritional Content of Prickly pads (Opuntia ficus indica) at Varied ages in an Organic Harvest. Int. J. Environ. Res. Public. Health. 8, 1287–1295 (2011). https://doi.org/10.3390/ijerph8051287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M.G. Astello-García, I. Cervantes, V. Nair, M. Santos-Díaz del, S. Reyes-Agüero, A. Guéraud, F. Negre-Salvayre, A. Rossignol, M. Cisneros-Zevallos, L. de la Rosa, A.P., Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J. Food Compos. Anal. 43, 119–130 (2015). https://doi.org/10.1016/j.jfca.2015.04.016

  5. C.E. Aruwa, S.O. Amoo, T. Kudanga, Opuntia (Cactaceae) plant compounds, biological activities and prospects – A comprehensive review. Food Res. Int. 112, 328–344 (2018). https://doi.org/10.1016/j.foodres.2018.06.047

    Article  PubMed  Google Scholar 

  6. R. Ciriminna, N. Chavarría-Hernández, A.I. Rodríguez‐Hernández, M. Pagliaro, Toward unfolding the bioeconomy of nopal (Opuntia spp). Biofuels Bioprod. Biorefining. 13, 1417–1427 (2019). https://doi.org/10.1002/bbb.2018

    Article  CAS  Google Scholar 

  7. M. Quintero-García, E. Gutiérrez-Cortez, M. Bah, A. Rojas-Molina, M. Cornejo-Villegas, A. de los, Del A. Real, I. Rojas-Molina, Comparative analysis of the Chemical Composition and Physicochemical properties of the mucilage extracted from Fresh and dehydrated Opuntia ficus indica Cladodes. Foods. 10, 2137 (2021). https://doi.org/10.3390/foods10092137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. K. El-Mostafa, E. Kharrassi, Y. Badreddine, A. Andreoletti, P. Vamecq, J.E. Kebbaj, M. Latruffe, N. Lizard, G. Nasser, B. Cherkaoui-Malki, Nopal Cactus (Opuntia ficus-indica) as a source of Bioactive Compounds for Nutrition, Health and Disease. Molecules. 19, 14879–14901 (2014). https://doi.org/10.3390/molecules190914879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P.I. Angulo-Bejarano, O. Martínez-Cruz, O. Paredes-Lopez, P. Content, Nutraceutical potential and biotechnological applications of an ancient Mexican plant: Nopal (Opuntia ficus-indica). Curr. Nutr. Food Sci. 10, 196–217 (2014). https://doi.org/10.2174/157340131003140828121015

    Article  CAS  Google Scholar 

  10. A.K.B. Corsi, M. Chalfie, A tranparent window into biology: a primer on caenorhabditis elegans. Genetics. 200, 387–407 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Brenner, The genetics of Caenorhabditis elegans. Genetics. 77, 71–94 (1974)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. W. Chen, L. Rezaizadehnajafi, M. Wink, Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans. J. Pharm. Pharmacol. 65, 682–688 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. N. Mudd, A.M. Liceaga, Caenorhabditis elegans as an in vivo model for food bioactives: a review. Curr. Res. Food Sci. 5, 845–856 (2022). https://doi.org/10.1016/j.crfs.2022.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A.O.A.C. 2000. Official Methods of Analysis Association of Official Analytical Chemist. EUA

  15. L. Prosky, de L. Vries, S. Lee, Determination of total, soluble and insoluble dietary fiber in foods; enzymatic-gravimetric method: collaborative study. J. AOAC Int. 73, 395–416 (1992)

    Google Scholar 

  16. De E. Santiago, G. Pereira-Caro, J.M. Moreno-Rojas, C. Cid, De M.-P. Peña, Digestibility of (poly)phenols and antioxidant activity in raw and cooked Cactus Cladodes (Opuntia ficus-indica). J. Agric. Food Chem. 66, 5832–5844 (2018). https://doi.org/10.1021/acs.jafc.8b01167

    Article  CAS  PubMed  Google Scholar 

  17. K.I. Ereifej, H. Feng, T.M. Rababah, S.H. Tashtoush, M.H. Al-U’datt, S. Gammoh, G.J. Al-Rabadi, Effect of Extractant and temperature on Phenolic compounds and antioxidant activity of selected spices. Food Nutr. Sci. 07, 362–370 (2016). https://doi.org/10.4236/fns.2016.75038

    Article  CAS  Google Scholar 

  18. W. Brand-Williams, M. Cuvelier, C. Berset, Use of Free Radical Method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30 (1995)

    Article  CAS  Google Scholar 

  19. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biol. Med. 26, 1231–1237 (1999)

    Article  CAS  Google Scholar 

  20. T. Stiernagle, Maintenance of C. elegans. WormBook. (2006)

  21. F. Surco-Laoos, J. Cabello, E. Gomez-Orte, S. Gonzales-Manzano, A. Gonzalez_Paramas, C. Santos-Buelga, M. Dueñas, Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenohabditis Elegans. Food Funct. 2, 445 (2011)

    Article  Google Scholar 

  22. J.S. Sangha, D. Fan, A.H. Banskota, R. Stefanova, W. Khan, J. Hafting, J. Craigie, A.T. Critchley, B. Prithiviraj, Bioactive components of the edible strain of red alga, Chondrus crispus, enhance oxidative stress tolerance in Caenorhabditis elegans. J. Funct. Foods. 5, 1180–1190 (2013). https://doi.org/10.1016/j.jff.2013.04.001

    Article  CAS  Google Scholar 

  23. S. Sugawara, T. Honma, J. Ito, R. Kijima, T. Tsuduki, Fish oil changes the lifespan of Caenorhabditis elegans via lipid peroxidation. J. Clin. Biochem. Nutr. 52, 139–145 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. W. Escorcia, D.L. Ruter, J. Nhan, S.P. Curran, Quantification of lipid abundance and evaluation of lipid distribution in Caenorhabditis elegans by Nile Red and Oil Red O staining. J. Vis. Exp. 57352 (2018). https://doi.org/10.3791/57352

  25. M.E. Rodríguez-Garcia, de C. Lira, E. Hernández-Becerra, M.A. Cornejo-Villegas, A.J. Palacios-Fonseca, I. Rojas-Molina, R. Reynoso, L.C. Quintero, A. Del-Real, T.A. Zepeda, C. Muñoz-Torres, Physicochemical Characterization of Nopal Pads (Opuntia ficus indica) and dry Vacuum Nopal powders as a function of the maturation. Plant. Foods Hum. Nutr. 62, 107–112 (2007). https://doi.org/10.1007/s11130-007-0049-5

    Article  PubMed  Google Scholar 

  26. S. Bensadón, D. Hervert-Hernández, S.G. Sáyago-Ayerdi, I. Goñi, By-Products of Opuntia ficus-indica as a source of antioxidant Dietary Fiber. Plant. Foods Hum. Nutr. 65, 210–216 (2010). https://doi.org/10.1007/s11130-010-0176-2

    Article  CAS  PubMed  Google Scholar 

  27. M. Dick, C. Limberger, C. Silveira Thys, R. de Oliveira Rios, A. Hickmann, S. Flôres, Mucilage and cladode flour from cactus (Opuntia monacantha) as alternative ingredients in gluten-free crackers. Food Chem. 314, 126178 (2020). https://doi.org/10.1016/j.foodchem.2020.126178

    Article  CAS  PubMed  Google Scholar 

  28. M. Aguilera-Barreiro, de los A. Rivera-Márquez, J.A. Trujillo-Arriaga, H.M. Tamayo y Orozco, J.A. Barreira-Mercado, E. Rodríguez-García, Intake of dehydrated nopal (Opuntia ficus indica) improves bone mineral density and calciuria in adult Mexican women. Food Nutr. Res. 57, 19106 (2013). https://doi.org/10.3402/fnr.v57i0.19106

    Article  Google Scholar 

  29. B. Nabil, R. Ouaabou, M. Ouhammou, L. Saadouni, M. Mahrouz, Impact of particle size on functional, physicochemical properties and antioxidant activity of cladode powder (Opuntia ficus-indica). J. Food Sci. Technol. 57, 943–954 (2020). https://doi.org/10.1007/s13197-019-04127-4

    Article  CAS  PubMed  Google Scholar 

  30. C. Anchondo-Trejo, J.A. Loya-Carrasco, T. Galicia-García, I. Estrada-Moreno, M. Mendoza-Duarte, L. Castellanos-Gallo, R. Márquez-Meléndez, B. Portillo-Arroyo, C. Soto-Figueroa, Development of a third generation snack of Rice Starch enriched with Nopal Flour (Opuntia ficus indica). Molecules. 26, 54 (2020). https://doi.org/10.3390/molecules26010054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Missaoui, I. D’Antuono, M. D’Imperio, V. Linsalata, S. Boukhchina, A.F. Logrieco, A. Cardinali, Characterization of micronutrients, Bioaccessibility and antioxidant activity of Prickly Pear Cladodes as functional ingredient. Molecules. 25, 2176 (2020). https://doi.org/10.3390/molecules25092176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. E. Ramírez-Moreno, C.D. Marqués, M.C. Sánchez-Mata, I. Goñi, In vitro calcium bioaccessibility in raw and cooked cladodes of prickly pear cactus (Opuntia ficus-indica L. Miller). LWT - Food Sci. Technol. 44, 1611–1615 (2011). https://doi.org/10.1016/j.lwt.2011.01.001

    Article  CAS  Google Scholar 

  33. F. Blando, R. Russo, C. Negro, De L. Bellis, S. Frassinetti, Antimicrobial and Antibiofilm Activity against Staphylococcus aureus of Opuntia ficus-indica (L.) Mill. Cladode Polyphenolic Extracts Antioxid. 8, 117 (2019). https://doi.org/10.3390/antiox8050117

    Article  CAS  Google Scholar 

  34. L. Santos-Zea, J.A. Gutiérrez-Uribe, S.O. Serna-Saldivar, Comparative Analyses of Total Phenols, antioxidant activity, and Flavonol Glycoside Profile of Cladode flours from different varieties of Opuntia spp. J. Agric. Food Chem. 59, 7054–7061 (2011). https://doi.org/10.1021/jf200944y

    Article  CAS  PubMed  Google Scholar 

  35. S.S. El-Hawary, M. Sobeh, W.K. Badr, M.A.O. Abdelfattah, Z.Y. Ali, M.E. El-Tantawy, M.A. Rabeh, M. Wink, HPLC-PDA-MS/MS profiling of secondary metabolites from Opuntia ficus-indica cladode, peel and fruit pulp extracts and their antioxidant, neuroprotective effect in rats with aluminum chloride induced neurotoxicity. Saudi J. Biol. Sci. 27, 2829–2838 (2020). https://doi.org/10.1016/j.sjbs.2020.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A. Ressaissi, N. Attia, P.L. Falé, R. Pacheco, B.L. Victor, M. Machuqueiro, M.L.M. Serralheiro, Isorhamnetin derivatives and piscidic acid for hypercholesterolemia: cholesterol permeability, HMG-CoA reductase inhibition, and docking studies. Arch. Pharm. Res. 40, 1278–1286 (2017). https://doi.org/10.1007/s12272-017-0959-1

    Article  CAS  PubMed  Google Scholar 

  37. J. Zhang, X. Xue, Y. Yang, W. Ma, Y. Han, X. Qin, Multiple biological defects caused by calycosin-7-O-β-d-glucoside in the nematode Caenorhabditis elegans are associated with the activation of oxidative damage. J. Appl. Toxicol. 38, 801–809 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. C. Moliner, L. Barros, M. Dias, V. López, E. Langa, I. Ferreira, C. Gómez-Rincón, Edible flowers of Tagetes erecta L. as Functional ingredients: phenolic composition, antioxidant and Protective effects on Caenorhabditis elegans. Nutrients. 10, 2002 (2018). https://doi.org/10.3390/nu10122002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Zheng, F. Enright, M. Keenan, J. Finley, J. Zhou, J. Ye, F. Greenway, R.N. Senevirathne, C.R. Gissendanner, R. Manaois, A. Prudente, J.M. King, R. Martin, R. Starch, Fermented resistant starch, and short-chain fatty acids reduce intestinal Fat Deposition in Caenorhabditis elegans. J. Agric. Food Chem. 58, 4744–4748 (2010). https://doi.org/10.1021/jf904583b

    Article  CAS  PubMed  Google Scholar 

  40. C. Gao, Z. Gao, F.L. Greenway, J.H. Burton, W.D. Johnson, M.J. Keenan, F.M. Enright, R.J. Martin, Y. Chu, J. Zheng, Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model. Nutr. Res. 35, 834–843 (2015). https://doi.org/10.1016/j.nutres.2015.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C.F. Rodrigues, W. Salgueiro, M. Bianchini, J.C. Veit, R.L. Puntel, T. Emanuelli, C.C. Dernadin, D.S. Ávila, Salvia hispanica L. (Chia) seeds oil extracts reduce lipid accumulation and produce stress resistance in Caenorhabditis elegans. Nutr. Metab. 15, 83 (2018). https://doi.org/10.1186/s12986-018-0317-4

    Article  CAS  Google Scholar 

  42. Y. Yue, S. Li, P. Shen, Y. Park, Caenorhabditis elegans as a model for obesity research. Curr. Res. Food Sci. 4, 692–697 (2021). https://doi.org/10.1016/j.crfs.2021.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.A.O. acknowledge to Universidad de las Américas Puebla (UDLAP) and Consejo Nacional de Humanidades, Ciencias y Tecnología (CONAHCYT) for the scholarship granted to complete her doctoral degree. The authors thank Food Analysis Laboratory Intema S.A. de C.V. for its contribution in mineral and polyphenol profile analysis in Opuntia ficus indica.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, R.A.O., J.D.L.R., M.M.R.R., and A.E.O.R; methodology, R.A.O., J.D.L.R., M.M.R.R., and A.E.O.R; validation, T.S.P., K.V.L., M.M.R.R., and A.E.O.R; formal analysis, J.D.L.R., C.A.P., T.S.P., K.V.L. M.M.R.R., and A.E.O.R; investigation, R.A.O., J.D.L.R., M.M.R.R., and A.E.O.R; resources, M.M.R.R., C.A.P., and A.E.O.R.; data curation, R.A.O. and T.S.P.; writing—original draft preparation, R.A.O., J.D.L.R., M.M.R.R., and A.E.O.R; writing—review and editing, R.A.O., J.D.L.R., M.M.R.R., and A.E.O.R; visualization, R.A.O. and J.D.L.R.; supervision, J.D.L.R., M.M.R.R, and A.E.O.R.; project administration, A.E.O.R.; funding acquisition, C.A.P, M.M.R.R., and A.E.O.R.

Corresponding author

Correspondence to Ana E. Ortega-Regules.

Ethics declarations

Ethical approval

Ethics approval was not required for this research.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aparicio-Ortuño, R., Lozada-Ramírez, J.D., de Parrodi, C.A. et al. Characterization of mexican Opuntia ficus indica cladode and bioactive compound profile. Oxidative stress resistance and anti-adipogenic effect in Caenorhabditis elegans. Food Measure (2024). https://doi.org/10.1007/s11694-024-02602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02602-x

Keywords

Navigation