Skip to main content

Advertisement

Log in

Characterization and shelf-life study of functional yoghurt based oral strip in polypropylene–aluminium/LLDPE blister pack

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study focuses on the development of a functional yoghurt oral film strip with antibacterial properties and probiotics [(Streptococcus thermophilus (S. thermophilus), Lactobacillus bulgaricus (L. bulgaricus), and Lactococcus cremoris (L. cremoris)] using a pectin/glycerol mixture. The tensile characters, colour, physiochemical characters, in vitro disintegration time, mouth dissolving time and in vitro dissolution test of the functional yoghurt oral strip was compared with commercial oral strips. The study examined the storage stability of functional yogurt oral strips over a period of 35 days at room temperature (25 °C) using blister packs made of polypropylene/aluminium and polypropylene/linear low-density polyethylene (LLDPE). Significant changes in mechanical properties, colour, surface pH, in vitro disintegration, and mouth dissolving time was observed with in vitro dissolution time of 6 min. Functional oral strip showed significant (p < 0.05) reduction in surface pH and probiotic viability, along with a significant increase in mouth dissolving time during storage in both packaging materials. Developed functional yoghurt oral strip also demonstrated better antibacterial quality on both storage materials with similar in vitro dissolution time periods. A satisfactory probiotic viability (> 6 log CFU/strip) was upheld for 28 days in a polypropylene/aluminium blister pack, resulting in an extended shelf life for the functional yogurt oral strip. Therefore, this functional yoghurt oral strip development can be considered as a promising production method to retain functional qualities with longer shelf life at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M.E. Sanders, D. Merenstein, C.A. Merrifield, R. Hutkins, Probiotics for human use. Nutr. Bull. 43(3), 212–225 (2018). https://doi.org/10.1111/nbu.12334

    Article  Google Scholar 

  2. T.K. Das, S. Pradhan, S. Chakrabarti, K.C. Mondal, K. Ghosh, Current status of probiotic and related health benefits. Appl. Food Res. 2(2), 100185 (2022). https://doi.org/10.1016/j.afres.2022.100185

    Article  CAS  Google Scholar 

  3. P. Markowiak, K. Ślizewska, Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients (2017). https://doi.org/10.3390/nu9091021

    Article  PubMed  PubMed Central  Google Scholar 

  4. M.A.R. Amalaradjou, A.K. Bhunia, Modern approaches in probiotics research to control foodborne pathogens (issue 67). Adv. Food Nutr. Res. (2012). https://doi.org/10.1016/B978-0-12-394598-3.00005-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. M.G. Mathipa-Mdakane, M.S. Thantsha, Lacticaseibacillus rhamnosus: a suitable candidate for the construction of novel bioengineered probiotic strains for targeted pathogen control. Foods (2022). https://doi.org/10.3390/foods11060785

  6. M. Aspri, P. Papademas, D. Tsaltas, Review on non-dairy probiotics and their use in non-dairy based products. Fermentation 6(1), 1–20 (2020). https://doi.org/10.3390/fermentation6010030

    Article  CAS  Google Scholar 

  7. R. Meghana, M. Velraj, An overview on mouth dissolving film. Asian J. Pharm. Clin. Res. 11(Special Issue 4), 44–47 (2018). https://doi.org/10.22159/ajpcr.2018.v11s4.31712

    Article  CAS  Google Scholar 

  8. S. Misra, P. Pandey, C.G. Dalbhagat, H.N. Mishra, Emerging technologies and coating materials for improved probiotication in food products: a review. Food Bioprocess Technol. 15(5), 998–1039 (2022). https://doi.org/10.1007/s11947-021-02753-5

    Article  Google Scholar 

  9. A. Terpou, A. Papadaki, I.K. Lappa, V. Kachrimanidou, L.A. Bosnea, N. Kopsahelis, Nutrients-11-01591 (1).Pdf. Nutrients 11(7), 32 (2019). https://www.mdpi.com/2072-6643/11/7/1591

  10. A.A. Abdillah, A.L. Charles, Characterization of a natural biodegradable edible film obtained from arrowroot starch and iota-carrageenan and application in food packaging. Int. J. Biol. Macromol. 191, 618–626 (2021). https://doi.org/10.1016/j.ijbiomac.2021.09.141

    Article  CAS  PubMed  Google Scholar 

  11. I. Kumar, V. Pandit, A comprehensive review on oral strips. Int. J. Pharm. Sci. Rev. Res. 58(1), 17–26 (2019)

    CAS  Google Scholar 

  12. M.B.H. Mahboob, T. Riaz, M. Jamshaid, I. Bashir, S. Zulfiqar, Oral films: a comprehensive review. Int. Curr. Pharm. J. 5(12), 111–117 (2016). https://doi.org/10.3329/icpj.v5i12.30413

    Article  CAS  Google Scholar 

  13. A.S. Kulkarni, H.A. Deokule, M.S. Mane, D.M. Ghadge, Exploration of different polymers for use in the formulation of oral fast dissolving strips. J. Curr. Pharm. Res. 2(1), 33–35 (2010)

    Google Scholar 

  14. B.P. Panda, N. Dey, M.E.B. Rao, Development of innovative orally fast disintegrating film dosage forms: a review. Int. J. Pharm. Sci. Nanotechnol. 5(2), 1666–1674 (2012). https://doi.org/10.37285/ijpsn.2012.5.2.2

    Article  Google Scholar 

  15. A. Kistaubayeva, M. Abdulzhanova, S. Zhantlessova, I. Savitskaya, T. Karpenyuk, A. Goncharova, Y. Sinyavskiy, The effect of encapsulating a prebiotic-based biopolymer delivery system for enhanced probiotic survival. Polymers 15(7), 1–15 (2023). https://doi.org/10.3390/polym15071752

    Article  CAS  Google Scholar 

  16. R. Sevinç Özakar, E. Özakar, Current overview of oral thin films. Turk. J. Pharm. Sci. 18(1), 111–121 (2021). https://doi.org/10.4274/tjps.galenos.2020.76390

    Article  PubMed  PubMed Central  Google Scholar 

  17. P. Jantrawut, T. Chaiwarit, K. Jantanasakulwong, C.H. Brachais, O. Chambin, Effect of plasticizer type on tensile property and in vitro indomethacin release of thin films based on low-methoxyl pectin. Polymers (2017). https://doi.org/10.3390/polym9070289

    Article  PubMed  PubMed Central  Google Scholar 

  18. L.A.K. Saleena, A.A.L. Song, Y.A. Yusof et al., Development of optimized functional clove fortified probiotic yoghurt. J. Food Sci. Technol. (2023). https://doi.org/10.1007/s13197-023-05904-y

    Article  Google Scholar 

  19. A. Ket-on, N. Pongmongkol, A. Somwangthanaroj, T. Janjarasskul, K. Tananuwong, Properties and storage stability of whey protein edible film with spice powders. J. Food Sci. Technol. 53(7), 2933–2942 (2016). https://doi.org/10.1007/s13197-016-2259-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R. Bala, S. Khanna, P. Pawar, Design optimization and in vitro–in vivo evaluation of orally dissolving strips of clobazam. J. Drug Deliv. 2014, 1–15 (2014). https://doi.org/10.1155/2014/392783

    Article  Google Scholar 

  21. V.K. Chandur, Formulation evaluation and optimization of fast dissolving oral strips of isosorbide mononitrate. Am. J. Pharmtech Res. 4(3), 1–20 (2014)

    Google Scholar 

  22. H. Singh, M. Kaur, H. Verma, Optimization and evaluation of desloratadine oral strip: an innovation in paediatric medication. Sci. World J. (2013). https://doi.org/10.1155/2013/395681

    Article  Google Scholar 

  23. R. Kumar Gunda, J. Suresh Kumar, C. Priyanaka, L. Sravani, B. Naveena, B. Yamini, S. Mansur Ali, Formulation development and evaluation of oral dissolving films—a review. J. Anal. Pharm. Res. 11(3), 131–134 (2022). https://doi.org/10.15406/japlr.2022.11.00414

    Article  Google Scholar 

  24. N.B.K. Zaman, N.K. Lin, P.L. Phing, Chitosan film incorporated with Garcinia atroviridis for the packaging of Indian mackerel (Rastrelliger kanagurta). Cienc. Agrotecnol. 42(6), 666–675 (2018). https://doi.org/10.1590/1413-70542018426019918

    Article  CAS  Google Scholar 

  25. A. Deepthi, B. Venkateswara Reddy, K. Navaneetha, Formulation and evaluation of fast dissolving oral films of zolmitriptan. Am. J. Adv. Drug Deliv. 2(2), 153–163 (2014)

    CAS  Google Scholar 

  26. A. Linku, J. Sijimol, Formulation and evaluation of fast dissolving oral film of anti-allergic drug. Asian J. Pharm. Res. Dev. 6(3), 5–16 (2018). https://doi.org/10.22270/ajprd.v6i3.374

    Article  CAS  Google Scholar 

  27. K. Pramod, U.K. Ilyas, Y.T. Kamal, S. Ahmad, S.H. Ansari, J. Ali, Development and validation of RP-HPLC-PDA method for the quantification of eugenol in developed nanoemulsion gel and nanoparticles. J. Anal. Sci. Technol. 4(1), 1 (2013). https://doi.org/10.1186/2093-3371-4-16

    Article  Google Scholar 

  28. S.N. Wai, Y.H. How, L.A.K. Saleena, P. Degraeve, N. Oulahal, L.P. Pui, Chitosan–sodium caseinate composite edible film incorporated with probiotic Limosilactobacillus fermentum. Foods 11(22), 3583 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E. Abdollahzadeh, S.M. Ojagh, A.A.I. Fooladi, B. Shabanpour, M. Gharahei, Effects of probiotic cells on the mechanical and antibacterial properties of sodium-caseinate films. Appl. Food Biotechnol. 5(3), 155–162 (2018). https://doi.org/10.22037/afb.v%vi%i.20360

    Article  CAS  Google Scholar 

  30. A.M. López De Lacey, M.E. López-Caballero, J. Gómez-Estaca, M.C. Gómez-Guillén, P. Montero, Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated to edible coatings and films. Innov. Food Sci. Emerg. Technol. 16, 277–282 (2012). https://doi.org/10.1016/j.ifset.2012.07.001

    Article  CAS  Google Scholar 

  31. F.P. Downes, K. Ito, Culture methods for enumeration of microorganisms, in Compendium of Methods for the Microbiological Examination of Foods, 4th edn. (APHA, Washington, D.C., 2001)

  32. N.O. Nwamaioha, S.A. Ibrahim, A selective medium for the enumeration and differentiation of Lactobacillus delbrueckii ssp. bulgaricus. J. Dairy Sci. 101(6), 4953–4961 (2018). https://doi.org/10.3168/jds.2017-14155

    Article  CAS  PubMed  Google Scholar 

  33. Y. Liu, N. Charamis, S. Boeren, J. Blok, A.G. Lewis, E.J. Smid, T. Abee, Physiological roles of short-chain and long-chain menaquinones (vitamin K2) in Lactococcus cremoris. Front. Microbiol. 13(March), 1–18 (2022). https://doi.org/10.3389/fmicb.2022.823623

    Article  Google Scholar 

  34. R.J.B. Heinemann, R.A. Carvalho, C.S. Favaro-Trindade, Orally disintegrating film (ODF) for delivery of probiotics in the oral cavity—development of a novel product for oral health. Innov. Food Sci. Emerg. Technol. 19, 227–232 (2013). https://doi.org/10.1016/j.ifset.2013.04.009

    Article  CAS  Google Scholar 

  35. B. Yang, C. Wei, Y. Yang, Q. Wang, S. Li, Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration. Drug Dev. Ind. Pharm. 44(9), 1417–1425 (2018). https://doi.org/10.1080/03639045.2018.1453519

    Article  CAS  PubMed  Google Scholar 

  36. H.M. Muzawar, K. Viresk, A.R.S. Chandur, Formulation evaluation and optimization of fast dissolving oral strips of isosorbide mononitrate. Am. J. Pharmtech Res. 4(3), 453–472 (2019)

    Google Scholar 

  37. J. Castro-Rosas, A.M. Cruz-Galvez, C.A. Gomez-Aldapa, R.N. Falfan-Cortes, F.A. Guzman-Ortiz, M.L. Rodríguez-Marín, Biopolymer films and the effects of added lipids, nanoparticles and antimicrobials on their mechanical and barrier properties: a review. Int. J. Food Sci. Technol. 51(9), 1967–1978 (2016). https://doi.org/10.1111/ijfs.13183

    Article  CAS  Google Scholar 

  38. S.K. Patel, D.R. Shah, S. Tiwari, Bioadhesive films containing fluconazole for mucocutaneous candidiasis. Indian J. Pharm. Sci. 77(1), 55–61 (2015). https://doi.org/10.4103/0250-474X.151601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. R. Bala, S. Khanna, P. Pawar, S. Arora, Orally dissolving strips: a new approach to oral drug delivery system. Int. J. Pharm. Investig. 3(2), 67 (2013). https://doi.org/10.4103/2230-973x.114897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. Sajayan, S. KK, S.C. C, J. MC, R.S. Nair, S. K, S. Kappally, S. KR, J. Joseph, Development and evaluation of fast dissolving oral films of mefenamic acid for the management of fever. Indian J. Pharm. Educ. Res. 57(1s), s41–s51 (2023). https://doi.org/10.5530/ijper.57.1s.6

  41. M.G.A. Mohammed, S.A. Adinarayana, Formulation design of hydrocortisone films for the treatment of aphthous ulcers. Turk. J. Pharm. Sci. 16(3), 348–355 (2019). https://doi.org/10.4274/tjps.galenos.2018.75046

    Article  CAS  Google Scholar 

  42. W.H. Sperber, M.P. Doyle, Compendium of the Microbiological Spoilage of Foods and Beverages. Food Microbiology and Food Safety (Springer, New York, NY, 2009). https://doi.org/10.1007/978-1-4419-0826-1

    Book  Google Scholar 

  43. H.A. Deokule, S.S. Pimple, P.D. Chaudhari, A.S. Kulkarni, Fabrication and evaluation of mouth dissolving strips of metoclopramide hydrochloride by using novel film former. Res. J. Pharm. Technol. 14(10), 5515–5520 (2021)

    Article  Google Scholar 

  44. M.L. Sanyang, S.M. Sapuan, M. Jawaid, M.R. Ishak, J. Sahari, Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Sci. Technol. 53(1), 326–336 (2016). https://doi.org/10.1007/s13197-015-2009-7

    Article  CAS  PubMed  Google Scholar 

  45. M.G.A. Vieira, M.A. Da Silva, L.O. Dos Santos, M.M. Beppu, Natural-based plasticizers and biopolymer films: a review. Eur. Polym. J. 47(3), 254–263 (2011). https://doi.org/10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  46. N.S. Kadbhane, D.M. Shinkar, R.B. Saudagar, An overview on: orally fast dissolving film. Int. J. ChemTech Res. 10(7), 815–821 (2017)

    Google Scholar 

  47. L. Nurdianti, T. Rusdiana, I. Sopyan, N.A. Putriana, H.R. Aiman, T.R. Fajria, Characteristic comparison of an intraoral thin film containing astaxanthin nanoemulsion using sodium alginate and gelatin polymers. Turk. J. Pharm. Sci. 18(3), 289–295 (2021). https://doi.org/10.4274/tjps.galenos.2020.25483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Y. Swetha, S. Naga Jyothi, Md. Gulshan, N. RamaRao, An overview on oroflash release films. Int. J. Pharm. Pharm. Res. 8(4), 66–84 (2017)

    CAS  Google Scholar 

  49. N.H. Che Hamzah, N. Khairuddin, I.I. Muhamad, M.A. Hassan, Z. Ngaini, S.R. Sarbini, Characterisation and colour response of smart sago starch-based packaging films incorporated with Brassica oleracea anthocyanin. Membranes (2022). https://doi.org/10.3390/membranes12100913

    Article  PubMed  PubMed Central  Google Scholar 

  50. N. Choobkar, A. Daraei Garmakhany, A.R. Aghajani, M. Ataee, Response surface optimization of pudding formulation containing fish gelatin and clove (Syzygium aromaticum) and cinnamon (Cinnamomum verum) powder: effect on color, physicochemical, and sensory attributes of the final pudding product. Food Sci. Nutr. 10(4), 1257–1274 (2022). https://doi.org/10.1002/fsn3.2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. S. Hemavathy, P. Sinha, U. Ubaidulla, G. Rathnam, A detailed account on novel oral fast dissolving strips: application and future prospects. Dep. Pharm. 10(4), 773–787 (2022)

    Google Scholar 

  52. A. Khristi, T. Soni, B. Suhagia, Design development & in-vitro evaluation of oral rapid mouth dissolving tablet containing sildenafil aspirin co-crystals using QbD approach. J. Chem. Pharm. Res. 8(10), 259–274 (2016)

    CAS  Google Scholar 

  53. M. Saab, M.M. Mehanna, Disintegration time of orally dissolving films: various methodologies and in-vitro/in-vivo correlation. Pharmazie 74(4), 227–230 (2019). https://doi.org/10.1691/ph.2019.8231

    Article  CAS  PubMed  Google Scholar 

  54. N. Janigová, J. Elbl, S. Pavloková, J. Gajdziok, Effects of various drying times on the properties of 3D printed orodispersible films. Pharmaceutics (2022). https://doi.org/10.3390/pharmaceutics14020250

    Article  PubMed  PubMed Central  Google Scholar 

  55. J. Carolina Visser, O.A.F. Weggemans, R.J. Boosman, K.U. Loos, H.W. Frijlink, H.J. Woerdenbag, Increased drug load and polymer compatibility of bilayered orodispersible films. Eur. J. Pharm. Sci. 107(May), 183–190 (2017). https://doi.org/10.1016/j.ejps.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  56. Astrazeneca, F. Al Husban, glad L. H. C. WO2017182589A1.pdf. (2017), p. 7

  57. N. Desai, M. Masen, P. Cann, B. Hanson, C. Tuleu, M. Orlu, Modernising orodispersible film characterisation to improve palatability and acceptability using a toolbox of techniques. Pharmaceutics 14(4), 1–15 (2022). https://doi.org/10.3390/pharmaceutics14040732

    Article  CAS  Google Scholar 

  58. K. Anjireddy, S. Karpagam, Micro and nanocrystalline cellulose based oral dispersible film; preparation and evaluation of in vitro/in vivo rapid release studies for donepezil. Braz. J. Pharm. Sci. 56, 1–17 (2020). https://doi.org/10.1590/s2175-97902020000117797

    Article  CAS  Google Scholar 

  59. J.N. Sowjanya, P.R. Rao, Development, optimization, and invitro evaluation of novel fast dissolving oral films (FDOF’s) of Uncaria tomentosa extract to treat osteoarthritis. Heliyon 9(3), e14292 (2023). https://doi.org/10.1016/j.heliyon.2023.e14292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. S. Kunte, P. Tandale, Fast dissolving strips: a novel approach for the delivery of verapamil. J. Pharm. Bioallied Sci. 2(4), 325 (2010). https://doi.org/10.4103/0975-7406.72133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. G.E. Yassin, H.A. Abass, Design and evaluation of fast dissolving oro-dispersible films of metoclopramide hydrochloride using 32 multifactorial designs. Int. J. Pharm. Pharm. Sci. 8(7), 218–222 (2016)

    CAS  Google Scholar 

  62. Y. Takeuchi, N. Ikeda, K. Tahara, H. Takeuchi, Mechanical characteristics of orally disintegrating films: comparison of folding endurance and tensile properties. Int. J. Pharm. 589(September), 119876 (2020). https://doi.org/10.1016/j.ijpharm.2020.119876

    Article  CAS  PubMed  Google Scholar 

  63. M. Zaman, R. Hassan, S. Razzaq, A. Mahmood, M.W. Amjad, M.A.G. Raja, A.A. Qaisar, A. Majeed, M. Hanif, R.A. Tahir, Fabrication of polyvinyl alcohol based fast dissolving oral strips of sumatriptan succinate and metoclopramide HCL. Sci. Prog. 103(4), 1–21 (2020). https://doi.org/10.1177/0036850420964302

    Article  CAS  Google Scholar 

  64. F. Cilurzo, I.E. Cupone, P. Minghetti, F. Selmin, L. Montanari, Fast dissolving films made of maltodextrins. Eur. J. Pharm. Biopharm. 70(3), 895–900 (2008). https://doi.org/10.1016/j.ejpb.2008.06.032

    Article  CAS  PubMed  Google Scholar 

  65. M.P. Tedesco, C.A. Monaco-Lourenço, R.A. Carvalho, Gelatin/hydroxypropyl methylcellulose matrices—polymer interactions approach for oral disintegrating films. Mater. Sci. Eng. C 69, 668–674 (2016). https://doi.org/10.1016/j.msec.2016.07.023

    Article  CAS  Google Scholar 

  66. M. Preis, K. Knop, J. Breitkreutz, Mechanical strength test for orodispersible and buccal films. Int. J. Pharm. 461(1–2), 22–29 (2014). https://doi.org/10.1016/j.ijpharm.2013.11.033

    Article  CAS  PubMed  Google Scholar 

  67. M. Rashighi, J.E. Harris, Impact of super-disintegrants and film thickness on disintegration time of strip films loaded with poorly water-soluble drug microparticles. Physiol. Behav. (2017). https://doi.org/10.1053/j.gastro.2016.08.014.CagY

    Article  Google Scholar 

  68. B.N. Nalluri, B. Sravani, V.S. Anusha, R. Sribramhini, K.M. Maheswari, Development and evaluation of mouth dissolving films of sumatriptan succinate for better therapeutic efficacy. J. Appl. Pharm. Sci. 3(8), 161–166 (2013). https://doi.org/10.7324/JAPS.2013.3828

    Article  CAS  Google Scholar 

  69. P.J.P. Espitia, W.X. Du, R. de Jesús Avena-Bustillos, N. de Fátima Ferreira Soares, T.H. McHugh, Edible films from pectin: physical-mechanical and antimicrobial properties—a review. Food Hydrocoll. 35, 287–296 (2014). https://doi.org/10.1016/j.foodhyd.2013.06.005

    Article  CAS  Google Scholar 

  70. T. Nisar, Z.C. Wang, X. Yang, Y. Tian, M. Iqbal, Y. Guo, Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 106, 670–680 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.068

    Article  CAS  PubMed  Google Scholar 

  71. E. Bragason, T. Berhe, D. Dashe, K.I. Sørensen, M.E. Guya, E.B. Hansen, Antimicrobial activity of novel Lactococcus lactis strains against Salmonella Typhimurium DT12, Escherichia coli O157:H7 VT− and Klebsiella pneumoniae in raw and pasteurised camel milk. Int. Dairy J. 111, 104832 (2020). https://doi.org/10.1016/j.idairyj.2020.104832

    Article  CAS  Google Scholar 

  72. L. Ravindran, N. Manjunath, R.P. Darshan, S.G.A. Manuel, In vitro study analysis of antimicrobial properties of lactic acid bacteria against pathogens. J. Bio Innov. 5(2), 262–269 (2016)

    CAS  Google Scholar 

  73. P. Sagar, P. Sharma, R. Singh, Antibacterial efficacy of different combinations of clove, eucalyptus, ginger, and selected antibiotics against clinical isolates of Pseudomonas aeruginosa. AYU (An International Quarterly Journal of Research in Ayurveda) 41(2), 123 (2020). https://doi.org/10.4103/ayu.ayu_101_19

    Article  Google Scholar 

  74. A. Güneş Bayir, M.G. Bilgin, S.S. Kutlu, D. Demirci, F.N. Gölgeci, Microbiological, chemical and sensory analyzes of produced probiotic yoghurts added clove and propolis. Icontech Int. J. 4(2), 1–14 (2020). https://doi.org/10.46291/icontechvol4iss2pp1-14

    Article  Google Scholar 

  75. G.E. Gardiner, E. O’Sullivan, J. Kelly, M.A.E. Auty, G.F. Fitzgerald, J.K. Collins, R.P. Ross, C. Stanton, Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl. Environ. Microbiol. 66(6), 2605–2612 (2000). https://doi.org/10.1128/AEM.66.6.2605-2612.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. S. Santacruz, M. Castro, Viability of free and encapsulated Lactobacillus acidophilus incorporated to cassava starch edible films and its application to Manaba fresh white cheese. LWT 93(April), 570–572 (2018). https://doi.org/10.1016/j.lwt.2018.04.016

    Article  CAS  Google Scholar 

  77. T. Mehdizadeh, H. Tajik, A.M. Langroodi, R. Molaei, A. Mahmoudian, Chitosan-starch film containing pomegranate peel extract and Thymus kotschyanus essential oil can prolong the shelf life of beef. Meat Sci. 163(May 2019), 108073 (2020). https://doi.org/10.1016/j.meatsci.2020.108073

    Article  CAS  PubMed  Google Scholar 

  78. C. Soukoulis, S. Behboudi-Jobbehdar, L. Yonekura, C. Parmenter, I. Fisk, Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus NCIMB 701748 using spray drying. Food Bioprocess Technol. 7(5), 1255–1268 (2014). https://doi.org/10.1007/s11947-013-1120-x

    Article  Google Scholar 

  79. P.K. Akman, F. Bozkurt, K. Dogan, F. Tornuk, F. Tamturk, Fabrication and characterization of probiotic Lactobacillus plantarum loaded sodium alginate edible films. J. Food Meas. Charact. 15(1), 84–92 (2021). https://doi.org/10.1007/s11694-020-00619-6

    Article  Google Scholar 

  80. S. Sathyabama, M. Ranjith kumar, P. Bruntha devi, R. Vijayabharathi, V. Brindha priyadharisini, Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. LWT 57(1), 419–425 (2014). https://doi.org/10.1016/j.lwt.2013.12.024

    Article  CAS  Google Scholar 

  81. T. Nisar, A. Alim, T. Iqbal, M. Iqbal, S. Tehseen, W. Zi-Chao, Y. Guo, Functionality of different probiotic strains embedded in citrus pectin based edible films. Int. J. Food Sci. Technol. 57(2), 1005–1015 (2022). https://doi.org/10.1111/ijfs.15460

    Article  CAS  Google Scholar 

  82. S. Namratha, V. Sreejit, R. Preetha, Fabrication and evaluation of physicochemical properties of probiotic edible film based on pectin–alginate–casein composite. Int. J. Food Sci. Technol. 55(4), 1497–1505 (2020). https://doi.org/10.1111/ijfs.14550

    Article  CAS  Google Scholar 

  83. R. Altamirano-Fortoul, R. Moreno-Terrazas, A. Quezada-Gallo, C.M. Rosell, Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocoll. 29(1), 166–174 (2012). https://doi.org/10.1016/j.foodhyd.2012.02.015

    Article  CAS  Google Scholar 

  84. A.S. Bauer, K. Leppik, K. Galić, I. Anestopoulos, M.I. Panayiotidis, S. Agriopoulou, M. Milousi, I. Uysal-Unalan, T. Varzakas, V. Krauter, Cereal and confectionary packaging: background, application and shelf-life extension. Foods (2022). https://doi.org/10.3390/foods11050697

Download references

Funding

This work was supported by the Research Excellence & Innovative Grant (REIG) scheme, UCSI University, Malaysia (REIG – FAS- 2021/003).

Author information

Authors and Affiliations

Authors

Contributions

Study design: Lejaniya Abdul Kalam Saleena and Liew Phing Pui; Experiments: Lejaniya Abdul Kalam Saleena; Data analysis: Lejaniya Abdul Kalam Saleena, Liew Phing Pui, Kar Lin Nyam; Writing—original draft preparation: Lejaniya Abdul Kalam Saleena; Writing—review & editing: Lejaniya Abdul Kalam Saleenaa, Kar Lin Nyam, Yus Aniza Yusof, Adelene Ai-Lian Song, Lionel Lian Aun In, and Liew Phing Pui; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liew Phing Pui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleena, L.A.K., Nyam, K.L., Yusof, Y.A. et al. Characterization and shelf-life study of functional yoghurt based oral strip in polypropylene–aluminium/LLDPE blister pack. Food Measure 18, 3771–3782 (2024). https://doi.org/10.1007/s11694-024-02448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02448-3

Keywords

Navigation