Skip to main content
Log in

Electrochemical detection of caffeine in sports drinks based on molecular imprinting technology

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This work presents the development of a novel electrochemical sensor for caffeine detection in sports drinks, utilizing molecular imprinting technology with surface-imprinted nanoparticles. Key to this study is the synthesis of caffeine-imprinted polypyrrole nanoparticles via electropolymerization, which displayed a high specific surface area (25 m2/g) and efficient template binding. The sensor exhibited a notable linear detection range from 30 to 150 µM and a significantly low limit of detection at 2.5 µM. Characterization of the nanoparticles was rigorously conducted using SEM, FTIR, and BET analysis. Optimized sensing conditions were established at pH 5, with a 5 min accumulation time and a scan rate of 50 mV/s, ensuring high sensitivity and selectivity. Practical application was demonstrated through the accurate detection of caffeine in commercially available sports drinks, with recovery rates ranging from 97.6 to 101.5%. This research underscores the potential of molecularly imprinted polymer-based sensors in simplifying and enhancing the detection of caffeine in complex matrices, offering a promising tool for health monitoring and sports performance analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Piletsky, F. Canfarotta, A. Poma, A.M. Bossi, S. Piletsky, Trends Biotechnol. 38, 368 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. S. Ramanavicius, A. Jagminas, A. Ramanavicius, Polymers 13, 974 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Y. Zou, H. Gu, J. Yang, T. Zeng, J. Yang, Y. Zhang, Carbon Lett. 33, 2075 (2023)

    Article  Google Scholar 

  4. K. Yi, S. Xu, H. Cheng, S. Chen, S. Jiang, J. Tu, Alex. Eng. J. 84, 93 (2023)

    Article  Google Scholar 

  5. H. Li, Y. Zhang, K. Feng, C. Wei, Carbon Lett. 33, 2143 (2023)

    Article  ADS  Google Scholar 

  6. C. Dong, H. Shi, Y. Han, Y. Yang, R. Wang, J. Men, Eur. Polym. J. 145, 110231 (2021)

    Article  CAS  Google Scholar 

  7. S. He, L. Zhang, S. Bai, H. Yang, Z. Cui, X. Zhang, Y. Li, Eur. Polym. J. 143, 110179 (2021)

    Article  CAS  Google Scholar 

  8. C.C. Villa, L.T. Sánchez, G.A. Valencia, S. Ahmed, T.J. Gutiérrez, Trends Food Sci. Technol. 111, 642 (2021)

    Article  CAS  Google Scholar 

  9. P. Zhang, D. Liu, Alex. Eng. J. 80, 1 (2023)

    Article  ADS  Google Scholar 

  10. J. Han, Carbon Lett. 33, 1959 (2023)

    Article  Google Scholar 

  11. A. Zhang, Y. Wang, H. Wang, Alex. Eng. J. 66, 537 (2023)

    Article  Google Scholar 

  12. B. Jiang, S. Wu, Alex. Eng. J. 66, 691 (2023)

    Article  Google Scholar 

  13. Z. Li, H. Liu, Alex. Eng. J. 82, 389 (2023)

    Article  CAS  Google Scholar 

  14. A.-E. Radi, T. Wahdan, A. El-Basiony, Curr. Anal. Chem. 15, 219 (2019)

    Article  CAS  Google Scholar 

  15. M. Feroz, P. Vadgama, Electroanalysis 32, 2361 (2020)

    Article  CAS  Google Scholar 

  16. A.A. Hasseb, O.R. Shehab, R.M. El Nashar, Curr. Opin. Electrochem. 31, 100848 (2022)

    Article  CAS  Google Scholar 

  17. A.M. Mostafa, S.J. Barton, S.P. Wren, J. Barker, TrAC Trends Anal. Chem. 144, 116431 (2021)

    Article  CAS  Google Scholar 

  18. R.D. Ayivi, S.O. Obare, J. Wei, TrAC Trends Anal. Chem. 167, 117231 (2023)

    Article  CAS  Google Scholar 

  19. J. Marfà, R.R. Pupin, M. Sotomayor, M.I. Pividori, Anal. Bioanal. Chem. 413, 6141 (2021)

    Article  PubMed  Google Scholar 

  20. C. Khouja, D. Kneale, G. Brunton, G. Raine, C. Stansfield, A. Sowden, K. Sutcliffe, J. Thomas, BMJ Open 12, e047746 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. La Vieille, Z. Gillespie, Y. Bonvalot, K. Benkhedda, N. Grinberg, J. Rotstein, J. Barber, A.D. Krahn, Appl. Physiol. Nutr. Metab. 46, 1019 (2021)

    Article  PubMed  Google Scholar 

  22. A.R. Jagim, P.S. Harty, G.M. Tinsley, C.M. Kerksick, A.M. Gonzalez, R.B. Kreider, S.M. Arent, R. Jager, A.E. Smith-Ryan, J.R. Stout, J. Int. Soc. Sports Nutr. 20, 2171314 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  23. X. Chen, Y. Liu, E.C. Jaenicke, A.N. Rabinowitz, Food Policy 87, 101746 (2019)

    Article  Google Scholar 

  24. A.O. Markon, O.E. Jones, C.M. Punzalan, P. Lurie, B. Wolpert, Public Health Nutr. 22, 2531 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  25. L.S. Teixeira, C.F. Silva, H.L. de Oliveira, L.A.F. Dinali, C.S. Nascimento Jr., K.B. Borges, Microchem. J. 158, 105252 (2020)

    Article  CAS  Google Scholar 

  26. F.J. Pereira, A. Rodríguez-Cordero, R. López, L.C. Robles, A.J. Aller, Pharmaceuticals 14, 466 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A.A. Elbashir, R.E. Elgack Elgorashe, A.O. Alnajjar, H.Y. Aboul-Enein, Sep. Sci. Plus 4, 266 (2021)

    Article  CAS  Google Scholar 

  28. K. Palur, S.C. Archakam, B. Koganti, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 243, 118801 (2020)

    Article  CAS  Google Scholar 

  29. M. Shehata, S. Azab, A. Fekry, Synth. Met. 256, 116122 (2019)

    Article  CAS  Google Scholar 

  30. R. Madhuvilakku, Y.-K. Yen, J. Electroanal. Chem. 924, 116882 (2022)

    Article  CAS  Google Scholar 

  31. K.K. Masibi, O.E. Fayemi, A.S. Adekunle, E.M. Sherif, E.E. Ebenso, Electroanalysis 32, 2745 (2020)

    Article  CAS  Google Scholar 

  32. D. Das, T.N. Chatterjee, R.B. Roy, B. Tudu, A.K. Hazarika, S. Sabhapondit, R. Bandyopadhyay, IEEE Sens. J. 20, 6240 (2020)

    Article  ADS  CAS  Google Scholar 

  33. S. Ding, Z. Lyu, S. Li, X. Ruan, M. Fei, Y. Zhou, X. Niu, W. Zhu, D. Du, Y. Lin, Biosens. Bioelectron. 191, 113434 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. R.D. Crapnell, R.J. Street, V. Ferreira-Silva, M.P. Down, M. Peeters, C.E. Banks, Anal. Chem. 93, 13235 (2021)

    Article  CAS  PubMed  Google Scholar 

  35. E. Mathieu-Scheers, S. Bouden, C. Grillot, J. Nicolle, F. Warmont, V. Bertagna, B. Cagnon, C. Vautrin-Ul, J. Electroanal. Chem. 848, 113253 (2019)

    Article  CAS  Google Scholar 

  36. E. Jara-Cornejo, S. Khan, J. Vega-Chacón, A. Wong, L.C. da Silva Neres, G. Picasso, M.D.P.T. Sotomayor, Biomimetics 8, 77 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. P. Raksawong, P. Nurerk, K. Chullasat, P. Kanatharana, O. Bunkoed, Microchim. Acta 186, 338 (2019)

    Article  Google Scholar 

  38. M.F. Koudehi, S.M. Pourmortazavi, R. Zibaseresht, S. Mirsadeghi, IEEE Sens. J. 21, 9492 (2021)

    Article  ADS  CAS  Google Scholar 

  39. M.K.S. Monteiro, D.R. Da Silva, M.A. Quiroz, V.J.P. Vilar, C.A. Martínez-Huitle, E.V. Dos Santos, Materials 14, 37 (2021)

    Article  ADS  CAS  Google Scholar 

  40. ŽZ. Tasić, M.B. Petrović Mihajlović, A.T. Simonović, M.B. Radovanović, M.M. Antonijević, Sensors 22, 9185 (2022)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Education Department of Sichuan Province (Multi source data-driven green governance and sustainable development of the sports industry towards the "dual carbon" strategic goal Research on the Path of Development, No. XXTYCY2023B04) and Research and innovation of teaching mode and quantitative evaluation of college public tennis course based on data driven (NO.CJF23072)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Li.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wei, D. Electrochemical detection of caffeine in sports drinks based on molecular imprinting technology. Food Measure (2024). https://doi.org/10.1007/s11694-024-02427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02427-8

Keywords

Navigation