Skip to main content

Advertisement

Log in

Effects of high hydrostatic pressure (HHP) on the rheological properties of pulp nectarine and the spray drying on the powder properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Non-thermal strategies have shown potential application in fruit processing. In this study, we evaluated the use of high hydrostatic pressure (HHP) (100–500 MPa) in the rheology of nectarine pulp and spray drying (190 °C/300.05 mL h−1) on powder properties. Empirical models were used to describe the rheological behavior of the pulp, in addition, the obtained powders were characterized in terms of their physical, morphological, structural and bioaccessibility properties. The treatment with HHP reduced the viscosity of the pulp, which showed pseudoplastic behavior and the Ostwald–de-Waele model showed the best fit (R2 > 0.99). While for the powder characteristics (yield between 34.58 and 59.19%), the GAB model best represents the water adsorption isotherms. The physical properties were influenced according to the applied pressure (p < 0.05) and zeta potential showed values in the range of − 28.78 mV to − 25.94 mV. It was seen that the pressure facilitated the extraction of total phenolic compounds, with a subsequent reduction in digestibility, the highlight being the pulp previously treated at 500 MPa, which presented a bioaccessibility of 31.61%. Morphologically, the increase in pressure changed the appearance of the surfaces from ovoid to spherical and rough, while for the FT-IR only the absorption intensities were modified. The HHP treatment applied to the pulp is a fast and efficient non-thermal method to improve the properties of the nectarine pulp and obtaining its powder by spray drying was feasible, guaranteeing greater stability during storage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Research data are not shared.

References

  1. I.B. Coutinho, M.B. Quezadas, L.F.G. de Souza, M. Nitz, K. Andreola, Spray drying of avocado pulp using the seed as an adjuvant. Powder Technol. 408, 117738 (2022). https://doi.org/10.1016/j.powtec.2022.117738

    Article  CAS  Google Scholar 

  2. M. Cheng, J. He, C. Li, G. Wu, K. Zhu, X. Chen et al., Comparison of microwave, ultrasound and ultrasound-microwave assisted solvent extraction methods on phenolic profile and antioxidant activity of extracts from jackfruit (Artocarpus heterophyllus Lam.) pulp. LWT (2023). https://doi.org/10.1016/j.lwt.2022.114395

    Article  Google Scholar 

  3. Y. Wang, Y. Hao, D. Zhou, L. Pan, K. Tu, Differences in commercial quality and carotenoids profile of yellow- and white-fleshed nectarine fruit during low temperature storage and the regulation of carotenoids by sugar. Postharvest Biol. Technol. 197, 112206 (2023). https://doi.org/10.1016/j.postharvbio.2022.112206

    Article  CAS  Google Scholar 

  4. E.S. Silva, S.C.R. Brandão, A.L. da Silva, J.H.F. da Silva, A.C.D. Coêlho, P.M. Azoubel, Ultrasound-assisted vacuum drying of nectarine. J. Food Eng. 246, 119–124 (2019). https://doi.org/10.1016/j.jfoodeng.2018.11.013

    Article  CAS  Google Scholar 

  5. S. Singh, S. Kawade, A. Dhar, S. Powar, Analysis of mango drying methods and effect of blanching process based on energy consumption, drying time using multi-criteria decision-making. Clean. Eng. Technol. 8, 100500 (2022). https://doi.org/10.1016/j.clet.2022.100500

    Article  Google Scholar 

  6. B.A.O. Sanchez, S.M.C. Celestino, M.B. de Abreu Gloria, I.C. Celestino, M.I.O. Lozada, S.D.A. Júnior et al., Pasteurization of passion fruit Passiflora setacea pulp to optimize bioactivecompounds retention. Food Chem. 6, 100084 (2020)

    CAS  Google Scholar 

  7. O.Y. Barrón-García, M. Gaytán-Martínez, A.K. Ramírez-Jiménez, I. Luzardo-Ocampo, G. Velazquez, E. Morales-Sánchez, Physicochemical characterization and polyphenol oxidase inactivation of Ataulfo mango pulp pasteurized by conventional and ohmic heating processes. LWT 143, 111113 (2021). https://doi.org/10.1016/j.lwt.2021.111113

    Article  CAS  Google Scholar 

  8. S.M. Castro, J.A. Saraiva, High-pressure processing of fruits and fruit products, in Emerging Technologies for Food Processing (2014), pp. 65–76. ISBN: 9780124114791

  9. R.M. Ferreira, R.A. Amaral, A. Silva, S.M. Cardoso, J.A. Saraiva, Effect of high-pressure and thermal pasteurization on microbial and physico-chemical properties of Opuntia ficus-indica juices. Beverages 8(4), 84 (2022). https://doi.org/10.3390/beverages8040084

    Article  CAS  Google Scholar 

  10. H.W. Huang, S.J. Wu, J.K. Lu, Y.T. Shyu, C.Y. Wang, Current status and future trends of high-pressure processing in food industry. Food Control 72, 1–8 (2017). https://doi.org/10.1016/j.foodcont.2016.07.019

    Article  Google Scholar 

  11. R.B. Mastello, N.S. Janzantti, A. Bisconsin-Júnior, M. Monteiro, Impact of HHP processing on volatile profile and sensory acceptance of Pêra-Rio orange juice. Innov. Food Sci. Emerg. Technol. 45, 106–114 (2018). https://doi.org/10.1016/j.ifset.2017.10.008

    Article  CAS  Google Scholar 

  12. R. Sun, R. Xing, J. Zhang, T. Deng, Y. Ge, W. Zhang, Y. Chen, Quality changes of HHP orange juice during storage: metabolomic data integration analyses. Food Chem. 404, 134612 (2023). https://doi.org/10.1016/j.foodchem.2022.134612

    Article  CAS  PubMed  Google Scholar 

  13. R.L.J. Almeida, N.C. Santos, W.B. de Brito Lima, C.E. de Araújo Padilha, N.S. Rios, E.S. Dos Santos, Effect of enzymatic hydrolysis on digestibility and morpho-structural properties of hydrothermally pre-treated red rice starch. Int. J. Biol. Macromol. 222, 65–76 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.089

    Article  CAS  PubMed  Google Scholar 

  14. Y. Ding, M. Wang, J. Wang, J. Diao, Y. Wu, J. Cheng, Q. Ban, Exploring the hydration promotion and cooking quality improvement of adlay seed by high hydrostatic pressure. LWT 171, 114158 (2022). https://doi.org/10.1016/j.lwt.2022.114158

    Article  CAS  Google Scholar 

  15. N.C. Santos, R.L.J. Almeida, G.M. da Silva, J.V.F. Feitoza, V.M.D.A. Silva, M.M.T. Saraiva et al., Impact of high hydrostatic pressure (HHP) pre-treatment drying cashew (Anacardium occidentale L.): drying behavior and kinetic of ultrasound-assisted extraction of total phenolics compounds. J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-022-01688-5

    Article  Google Scholar 

  16. R. De la Peña-Armada, P. Rupérez, M.J. Villanueva-Suarez, I. Mateos-Aparicio, High hydrostatic pressure assisted by food-grade enzymes as a sustainable approach for the development of an antioxidant ingredient. LWT 169, 113968 (2022). https://doi.org/10.1016/j.lwt.2022.113968

    Article  CAS  Google Scholar 

  17. M. Kaveh, A. Jahanbakhshi, Y. Abbaspour-Gilandeh, E. Taghinezhad, M.B.F. Moghimi, The effect of ultrasound pre-treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network. J. Food Process Eng. 41(7), e12868 (2018). https://doi.org/10.1111/jfpe.12868

    Article  CAS  Google Scholar 

  18. K. Lakshmipathy, N. Thirunavookarasu, N. Kalathil, D.V. Chidanand, A. Rawson, C.K. Sunil, Effect of different thermal and non-thermal pre-treatments on bioactive compounds of aqueous ginger extract obtained using vacuum-assisted conductive drying system. J. Food Process Eng. (2022). https://doi.org/10.1111/jfpe.14223

    Article  Google Scholar 

  19. A. Özkan-Karabacak, B. Acoğlu, P. Yolci Ömeroğlu, Ö.U. Çopur, Microwave pre-treatment for vacuum drying of orange slices: drying characteristics, rehydration capacity and quality properties. J. Food Process Eng. 43(11), e13511 (2020). https://doi.org/10.1111/jfpe.13511

    Article  CAS  Google Scholar 

  20. N.C. Santos, R.L.J. Almeida, G.M. da Silva, S.S. Monteiro, V.H. de Alcântara Ribeiro, A.P. de França Silva et al., Influence of high hydrostatic pressure (HHP) pretreatment on plum (Prunus salicina) drying: drying approach, physical, and morpho-structural properties of the powder and total phenolic compounds. J. Food Process. Preserv. 46(11), e16968 (2022). https://doi.org/10.1111/jfpp.16968

    Article  CAS  Google Scholar 

  21. L. Yuan, F. Lao, X. Shi, D. Zhang, J. Wu, Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices. Ultrason. Sonochem. 90, 106219 (2022). https://doi.org/10.1016/j.ultsonch.2022.106219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M.R.I. Shishir, W. Chen, Trends of spray drying: a critical review on drying of fruit and vegetable juices. Trends Food Sci. Technol. 65, 49–67 (2017). https://doi.org/10.1016/j.tifs.2017.05.006

    Article  CAS  Google Scholar 

  23. P. Nazni, G. Vaisnavi, Formulation and characterization of popsicles using dehydrated passion fruit juice with foxtail millet milk. J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-022-01772-w

    Article  Google Scholar 

  24. A. Baldelli, D.Y. Liang, Y. Guo, A. Pratap-Singh, Effect of the formulation on mucoadhesive spray-dried microparticles containing iron for food fortification. Food Hydrocoll. 134, 107906 (2023). https://doi.org/10.1016/j.foodhyd.2022.107906

    Article  CAS  Google Scholar 

  25. Z. Tu, J. Irudayaraj, Y. Lee, Characterizing spray-dried powders through NIR spectroscopy: effect of two preparation strategies for calibration samples and comparison of two types of NIR spectrometers. Foods 12(3), 467 (2023). https://doi.org/10.3390/foods12030467

    Article  CAS  PubMed  Google Scholar 

  26. B.R. Bhandari, A. Senoussi, E.D. Dumoulin, A. Lebert, Spray drying of concentrated fruit juices. Dry. Technol. 11(5), 1081–1092 (1993). https://doi.org/10.1080/07373939308916884

    Article  CAS  Google Scholar 

  27. V. Braga, L.R. Guidi, R.C. de Santana, M.F. Zotarelli, Production and characterization of pineapple-mint juice by spray drying. Powder Technol. 375, 409–419 (2020). https://doi.org/10.1016/j.powtec.2020.08.012

    Article  CAS  Google Scholar 

  28. L. Wang, A. Clardy, D. Hui, Y. Wu, Physiochemical properties of encapsulated bitter melon juice using spray drying. Bioact. Carbohydr. Diet. Fibre 26, 100278 (2021). https://doi.org/10.1016/j.bcdf.2021.100278

    Article  CAS  Google Scholar 

  29. M. Souza, A. Mesquita, P. Souza, G. Borges, T. Silva, A. Converti, M.I. Maciel, New functional non-dairy mixed tropical fruit juice microencapsulated by spray drying: physicochemical characterization, bioaccessibility, genetic identification and stability. LWT 152, 112271 (2021). https://doi.org/10.1016/j.lwt.2021.112271

    Article  CAS  Google Scholar 

  30. A. Baldelli, H. Oguzlu, D.Y. Liang, A. Subiantoro, M.W. Woo, A. Pratap-Singh, Spray freeze drying of dairy products: effect of formulation on dispersibility. J. Food Eng. 335, 111191 (2022). https://doi.org/10.1016/j.jfoodeng.2022.111191

    Article  CAS  Google Scholar 

  31. S. Srivastava, M. Bansal, D. Jain, Y. Srivastava, Encapsulation for efficient spray drying of fruit juices with bioactive retention. J. Food Meas. Charact. 16(5), 3792–3814 (2022). https://doi.org/10.1007/s11694-022-01481-4

    Article  Google Scholar 

  32. M.A. Schutyser, E.M. Both, I. Siemons, E.M. Vaessen, L. Zhang, Gaining insight on spray drying behavior of foods via single droplet drying analyses. Dry. Technol. 37(5), 525–534 (2019). https://doi.org/10.1080/07373937.2018.1482908

    Article  CAS  Google Scholar 

  33. S. Rojas-Moreno, F. Cárdenas-Bailón, G. Osorio-Revilla, T. Gallardo-Velázquez, J. Proal-Nájera, Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil. J. Food Meas. Charact. 12, 650–660 (2018). https://doi.org/10.1007/s11694-017-9678-z

    Article  Google Scholar 

  34. S.D.F. Sousa, A.J.D.M. Queiroz, R.M.F.D. Figueirêdo, F.B.D. Silva, Rheological behavior of whole and concentrated noni pulp. Braz. J. Food Technol. 20, e2016067 (2017). https://doi.org/10.1590/1981-6723.6716

    Article  Google Scholar 

  35. O. Bashir, S.Z. Hussain, K. Ameer, T. Amin, I.A.M. Ahmed, M.O. Aljobair et al., Influence of anticaking agents and storage conditions on quality characteristics of spray dried apricot powder: shelf life prediction studies using Guggenheim-Anderson-de Boer (GAB) model. Foods 12(1), 171 (2023). https://doi.org/10.3390/foods12010171

    Article  CAS  Google Scholar 

  36. A.A. Santana, D.M. Cano-Higuita, R.A. De Oliveira, V.R. Telis, Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Food Chem. 212, 1–9 (2016). https://doi.org/10.1016/j.foodchem.2016.05.148

    Article  CAS  PubMed  Google Scholar 

  37. Y. Suhag, G.A. Nayik, V. Nanda, Modelling of moisture sorption isotherms and glass transition temperature of spray-dried honey powder. J. Food Meas. Charact. 12(4), 2553–2560 (2018). https://doi.org/10.1007/s11694-018-9872-7

    Article  Google Scholar 

  38. M. Smita, M. Bashir, S. Haripriya, Physicochemical and functional properties of peeled and unpeeled coconut haustorium flours. J. Food Meas. Charact. 13(1), 61–69 (2019). https://doi.org/10.1007/s11694-018-9919-9

    Article  Google Scholar 

  39. J.I. Wells, Pharmaceutical Preformulation: The Physicochemical Properties of drug Substances (E. Horwood, Chichester, 1988)

    Google Scholar 

  40. R.V. Tonon, C. Brabet, M.D. Hubinger, Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng. 88(3), 411–418 (2008). https://doi.org/10.1016/j.jfoodeng.2008.02.029

    Article  Google Scholar 

  41. J.L. Maia, T.N.P. Dantas, B.P.D.C. Neto, K.C. Borges, E.C. Lima, A.L.D.M.L. da Mata et al., Extract of spray-dried Malay apple (Syzygium malaccense L.) skin. J. Food Process Eng. 42(8), e13275 (2019). https://doi.org/10.1111/jfpe.13275

    Article  Google Scholar 

  42. U. Gawlik-Dziki, D. Dziki, B. Baraniak, R. Lin, The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. LWT 42(1), 137–143 (2009). https://doi.org/10.1016/j.lwt.2008.06.009

    Article  CAS  Google Scholar 

  43. A. Brodkorb, L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance et al., INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 14(4), 991–1014 (2019). https://doi.org/10.1038/s41596-018-0119-1

    Article  CAS  PubMed  Google Scholar 

  44. S. Thummajitsakul, P. Piyaphan, S. Khamthong, M. Unkam, K. Silprasit, Comparison of FTIR fingerprint, phenolic content, antioxidant and anti-glucosidase activities among Phaseolus vulgaris L., Arachis hypogaea L. and Plukenetia volubilis L. Electron. J. Biotechnol. 61, 14–23 (2023). https://doi.org/10.1016/j.ejbt.2022.10.003

    Article  CAS  Google Scholar 

  45. J. Liu, R. Wang, X. Wang, L. Yang, Y. Shan, Q. Zhang, S. Ding, Effects of high-pressure homogenization on the structural, physical, and rheological properties of lily pulp. Foods 8(10), 472 (2019). https://doi.org/10.3390/foods8100472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M. Opazo-Navarrete, G. Tabilo-Munizaga, A. Vega-Gálvez, M. Miranda, M. Pérez-Won, Effects of high hydrostatic pressure (HHP) on the rheological properties of Aloe vera suspensions (Aloe barbadensis Miller). Innov. Food Sci. Emerg. Technol. 16, 243–250 (2012). https://doi.org/10.1016/j.ifset.2012.06.006

    Article  Google Scholar 

  47. M.D. Alvarez, R. Fuentes, W. Canet, Effects of pressure, temperature, treatment time, and storage on rheological, textural, and structural properties of heat-induced chickpea gels. Foods 4(2), 80–114 (2015). https://doi.org/10.3390/foods4020080

    Article  PubMed  PubMed Central  Google Scholar 

  48. D.F. Keenan, N. Brunton, F. Butler, R. Wouters, R. Gormley, Evaluation of thermal and high hydrostatic pressure processed apple purees enriched with prebiotic inclusions. Innov. Food Sci. Emerg. Technol. 12(3), 261–268 (2011). https://doi.org/10.1016/j.ifset.2011.04.003

    Article  CAS  Google Scholar 

  49. R.L. Almeida, N.C. Santos, T. dos Santos Pereira, V.M. de Alcântara Silva, V.H. de Alcantara Ribeiro, L.N. Silva et al., Estudo reológico da polpa de Jabuticaba com diferentes concentrações de goma arábica. Res. Soc. Dev. 9(3), e91932511 (2020). https://doi.org/10.33448/rsd-v9i3.2511

    Article  Google Scholar 

  50. S.S. Sakr, S.H. Mohamed, A.A. Ali, W.E. Ahmed, R.M. Algheshairy, M.S. Almujaydil et al., Nutritional, physicochemical, microstructural, rheological, and organoleptical characteristics of ice cream incorporating adansonia digitata pulp flour. Foods 12(3), 533 (2023). https://doi.org/10.3390/foods12030533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. B. Yuan, M.G.C. Danao, M. Lu, S.A. Weier, J.E. Stratton, C.L. Weller, High pressure processing (HPP) of aronia berry puree: pilot scale processing and a shelf-life study. Innov. Food Sci. Emerg. Technol. 47, 241–248 (2018). https://doi.org/10.1016/j.ifset.2018.03.006

    Article  CAS  Google Scholar 

  52. S.L. Barros, N.C. Santos, R.D. Almeida, V.M. de Alcântara Silva, R.L.J. Almeida, A.P.S. Nascimento, Comportamento reológico e perfil de textura de iogurte integral com polpa de achachairu (Garcinia humilis). Revista Principia 1(47), 145–152 (2019). https://doi.org/10.18265/1517-03062015v1n47p145-152

    Article  Google Scholar 

  53. C.G. Pereira, J.V. de Resende, T.M. Giarola, Relationship between the thermal conductivity and rheological behavior of acerola pulp: effect of concentration and temperature. LWT 58(2), 446–453 (2014). https://doi.org/10.1016/j.lwt.2014.04.016

    Article  CAS  Google Scholar 

  54. B. Saberi, Q.V. Vuong, S. Chockchaisawasdee, J.B. Golding, C.J. Scarlett, C.E. Stathopoulos, Water sorption isotherm of pea starch edible films and prediction models. Foods 5(1), 1 (2015). https://doi.org/10.3390/foods5010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. G.A. Collazos-Escobar, N. Gutierrez-Guzman, H.A. Vaquiro-Herrera, J. Bon, J.V. Garcia-Perez, Thermodynamic analysis and modeling of water vapor adsorption isotherms of roasted specialty coffee (Coffee arabica L. cv. Colombia). LWT 160, 113335 (2022). https://doi.org/10.1016/j.lwt.2022.113335

    Article  CAS  Google Scholar 

  56. J.A.C. Echavarria, A.M.R. Torres, J.E.Z. Montoya, Sorption isotherms and thermodynamic properties of the dry silage of red tilapia viscera (Oreochromis spp.) obtained in a direct solar dryer. Heliyon 7(4), e06798 (2021). https://doi.org/10.1016/j.heliyon.2021.e06798

    Article  CAS  Google Scholar 

  57. L. Tavares, C.P.Z. Noreña, Characterization of the physicochemical, structural and thermodynamic properties of encapsulated garlic extract in multilayer wall materials. Powder Technol. 378, 388–399 (2021). https://doi.org/10.1016/j.powtec.2020.10.009

    Article  CAS  Google Scholar 

  58. S.K. Velázquez-Gutiérrez, A.C. Figueira, M.E. Rodríguez-Huezo, A. Román-Guerrero, H. Carrillo-Navas, C. Pérez-Alonso, Sorption isotherms, thermodynamic properties and glass transition temperature of mucilage extracted from chia seeds (Salvia hispanica L.). Carbohydr. Polym. 121, 411–419 (2015). https://doi.org/10.1016/j.carbpol.2014.11.068

    Article  CAS  PubMed  Google Scholar 

  59. T. Qadri, H.R. Naik, S.Z. Hussain, B. Naseer, T. Bhat, F.J. Wani, Spray dried apple powder: qualitative, rheological, structural characterization and its sorption isotherm. LWT 165, 113694 (2022). https://doi.org/10.1016/j.lwt.2022.113694

    Article  CAS  Google Scholar 

  60. D.P. Rosa, R.R. Evangelista, A.L.B. Machado, M.A.R. Sanches, J. Telis-Romero, Water sorption properties of papaya seeds (Carica papaya L.) formosa variety: an assessment under storage and drying conditions. LWT 138, 110458 (2021). https://doi.org/10.1016/j.lwt.2020.110458

    Article  CAS  Google Scholar 

  61. J. Gawałek, Spray drying of chokeberry juice-antioxidant phytochemicals retention in the obtained powders versus energy consumption of the process. Foods 11(18), 2898 (2022). https://doi.org/10.3390/foods11182898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. G.D. Tirta, L. Martin, M.D. Bani, K. Kho, I.T. Pramanda, L.P. Pui et al., Spray drying encapsulation of Pediococcus acidilactici at different inlet air temperatures and wall material ratios. Foods 12(1), 165 (2023). https://doi.org/10.3390/foods12010165

    Article  CAS  Google Scholar 

  63. A.N. Yüksel, Development of yoghurt powder using microwave-assisted foam-mat drying. J. Food Sci. Technol. 58(7), 2834–2841 (2021). https://doi.org/10.1007/s13197-021-05035-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. K.H. Sarabandi, S.H. Peighambardoust, A.R. Sadeghi Mahoonak, S.P. Samaei, Effect of different carriers on microstructure and physical characteristics of spray dried apple juice concentrate. J. Food Sci. Technol. 55, 3098–3109 (2018). https://doi.org/10.1007/s13197-018-3235-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. C. Zhang, S.L.A. Khoo, P. Swedlund, Y. Ogawa, Y. Shan, S.Y. Quek, Fabrication of spray-dried microcapsules containing noni juice using blends of maltodextrin and gum acacia: physicochemical properties of powders and bioaccessibility of bioactives during in vitro digestion. Foods 9(9), 1316 (2020). https://doi.org/10.3390/foods9091316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. S. Sarkhel, D. Manvi, C.T. Ramachandra, M. Manjunath, U.K. Nidoni, Studies on supercritical fluid extraction and spray drying effect on the quality of instant tea of Mulberry leaves (Morus alba L.). Meas. Food 7, 100052 (2022). https://doi.org/10.1016/j.meafoo.2022.100052

    Article  Google Scholar 

  67. N. Jose, M.R. Ravindra, G.P. Deshmukh, Effect of dry-crystallization method on the engineering properties of an instant mix for rice flake-milk pudding. Meas. Food 7, 100044 (2022). https://doi.org/10.1016/j.meafoo.2022.100044

    Article  Google Scholar 

  68. L.M. Cardona, M. Cortés-Rodríguez, F.J.C. Galeano, Optimization of fluidized bed agglomeration process of a pineapple powder mixture using a binder solution of ginger extract and vitamin C. LWT 171, 114075 (2022). https://doi.org/10.1016/j.lwt.2022.114075

    Article  CAS  Google Scholar 

  69. M.A. Bednarska, E. Janiszewska-Turak, The influence of spray drying parameters and carrier material on the physico-chemical properties and quality of chokeberry juice powder. J. Food Sci. Technol. 57(2), 564–577 (2020). https://doi.org/10.1007/s13197-019-04088-8

    Article  CAS  PubMed  Google Scholar 

  70. D. Samyor, S.C. Deka, A.B. Das, Physicochemical and phytochemical properties of foam mat dried passion fruit (Passiflora edulis Sims) powder and comparison with fruit pulp. J. Food Sci. Technol. 58, 787–796 (2021). https://doi.org/10.1007/s13197-020-04596-y

    Article  CAS  PubMed  Google Scholar 

  71. M.A. Arebo, J.D. Feyisa, K.D. Tafa, N. Satheesh, Optimization of spray-drying parameter for production of better quality orange fleshed sweet potato (Ipomoea batatas L.) powder: selected physiochemical, morphological, and structural properties. Heliyon (2023). https://doi.org/10.1016/j.heliyon.2023.e13078

    Article  PubMed  PubMed Central  Google Scholar 

  72. J.C.P. Pombo, H.H.B.R. de Medeiros, R.D.S. Pena, Optimization of the spray drying process for developing cupuassu powder. J. Food Sci. Technol. 57, 4501–4513 (2020). https://doi.org/10.1007/s13197-020-04487-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. A.H. Sourki, A. Koocheki, M. Elahi, Influence of β-glucan extracted from hull-less barley on droplet characterization, stability and rheological properties of soy protein isolate stabilized oil-in-water emulsions. J. Food Sci. Technol. 59(5), 1781–1791 (2022). https://doi.org/10.1007/s13197-021-05189-z

    Article  CAS  Google Scholar 

  74. D.J. McClements, Food Emulsions: Principles, Practices, and Techniques (CRC Press, Boca Raton, 2015)

    Book  Google Scholar 

  75. S. Siriamornpun, N. Weerapreeyakul, S. Barusrux, Bioactive compounds and health implications are better for green jujube fruit than for ripe fruit. J. Funct. Foods 12, 246–255 (2015). https://doi.org/10.1016/j.jff.2014.11.016

    Article  CAS  Google Scholar 

  76. P. Kashyap, C.S. Riar, N. Jindal, Effect of extraction methods and simulated in vitro gastrointestinal digestion on phenolic compound profile, bio-accessibility, and antioxidant activity of Meghalayan cherry (Prunus nepalensis) pomace extracts. LWT 153, 112570 (2022). https://doi.org/10.1016/j.lwt.2021.112570

    Article  CAS  Google Scholar 

  77. G.I. Peña-Vázquez, M.T. Dominguez-Fernández, B.D. Camacho-Zamora, M. Hernandez-Salazar, V. Urías-Orona, M.P. De Peña, A.L. de la Garza, In vitro simulated gastrointestinal digestion impacts bioaccessibility and bioactivity of Sweet orange (Citrus sinensis) phenolic compounds. J. Funct. Foods 88, 104891 (2022). https://doi.org/10.1016/j.jff.2021.104891

    Article  CAS  Google Scholar 

  78. L. Pollini, A. Juan-García, F. Blasi, J. Mañes, L. Cossignani, C. Juan, Assessing bioaccessibility and bioavailability in vitro of phenolic compounds from freeze-dried apple pomace by LC-Q-TOF-MS. Food Biosci. (2022). https://doi.org/10.1016/j.fbio.2022.101799

    Article  Google Scholar 

  79. W. Qin, S. Ketnawa, Y. Ogawa, Effect of digestive enzymes and pH on variation of bioavailability of green tea during simulated in vitro gastrointestinal digestion. Food Sci. Hum. Wellness 11(3), 669–675 (2022). https://doi.org/10.1016/j.fshw.2021.12.024

    Article  CAS  Google Scholar 

  80. T. Lafarga, S. Villaró, A. Rivera, G. Bobo, I. Aguiló-Aguayo, Bioaccessibility of polyphenols and antioxidant capacity of fresh or minimally processed modern or traditional lettuce (Lactuca sativa L.) varieties. J. Food Sci. Technol. 57(2), 754–763 (2020). https://doi.org/10.1007/s13197-019-04108-7

    Article  CAS  PubMed  Google Scholar 

  81. A. Chandrasekara, F. Shahidi, Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J. Funct. Foods 4(1), 226–237 (2012). https://doi.org/10.1016/j.jff.2011.11.001

    Article  CAS  Google Scholar 

  82. K. Cabezas-Terán, C. Grootaert, J. Ortiz, S. Donoso, J. Ruales, F. Van Bockstaele et al., In vitro bioaccessibility and uptake of β-carotene from encapsulated carotenoids from mango by-products in a coupled gastrointestinal digestion/Caco-2 cell model. Food Res. Int. 164, 112301 (2023). https://doi.org/10.1016/j.foodres.2022.112301

    Article  CAS  PubMed  Google Scholar 

  83. V. Valková, H. Ďúranová, A. Falcimaigne-Cordin, C. Rossi, F. Nadaud, A. Nesterenko et al., Impact of freeze- and spray-drying microencapsulation techniques on β-glucan powder biological activity: a comparative study. Foods 11(15), 2267 (2022). https://doi.org/10.3390/foods11152267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. K.H. Lee, T.Y. Wu, L.F. Siow, Spray drying of red (Hylocereus polyrhizus) and white (Hylocereus undatus) dragon fruit juices: physicochemical and antioxidant properties of the powder. Int. J. Food Sci. Technol. 48(11), 2391–2399 (2013). https://doi.org/10.1111/ijfs.12230

    Article  CAS  Google Scholar 

  85. K. Lim, M. Ma, K.D. Dolan, Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products. J. Food Sci. 76(7), 156–164 (2011). https://doi.org/10.1111/j.1750-3841.2011.02286.x

    Article  CAS  Google Scholar 

  86. R.L.J. Almeida, N.C. Santos, J.V.F. Feitoza, T. dos Santos Pereira, R. da Silva Eduardo, M.M. de Almeida Mota et al., Evaluation of the technological properties of rice starch modified by high hydrostatic pressure (HHP). Innov. Food Sci. Emerg. Technol. 83, 103241 (2022). https://doi.org/10.1016/j.ifset.2022.103241

    Article  CAS  Google Scholar 

  87. F. Cincotta, M. Merlino, A. Verzera, E. Gugliandolo, C. Condurso, Innovative process for dried caper (Capparis spinosa L.) powder production. Foods 2022(11), 3765 (2022). https://doi.org/10.3390/foods11233765

    Article  CAS  Google Scholar 

  88. A. Hamdi, I. Viera-Alcaide, R. Guillén-Bejarano, R. Rodríguez-Arcos, M.J. Muñoz, J.M. Monje Moreno, A. Jiménez-Araujo, Asparagus fructans as emerging prebiotics. Foods 12(1), 81 (2023). https://doi.org/10.3390/foods12010081

    Article  CAS  Google Scholar 

  89. N. Nicolaou, Y. Xu, R. Goodacre, Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. J. Dairy Sci. 93(12), 5651–5660 (2010). https://doi.org/10.3168/jds.2010-3619

    Article  CAS  PubMed  Google Scholar 

  90. G.D. Feng, F. Zhang, L.H. Cheng, X.H. Xu, L. Zhang, H.L. Chen, Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination. Bioresour. Technol. 128, 107–112 (2013). https://doi.org/10.1016/j.biortech.2012.09.123

    Article  CAS  PubMed  Google Scholar 

  91. M.A. Khatun, M. Razzak, M.A. Hossain, A. Hossain, M. Islam, M. Shahjalal et al., Gamma radiation processing of honey of mustard, black seed and lychee flower: measurement of antioxidant, antimicrobial, and Fourier transform infrared (FT-IR) spectra. Meas. Food 6, 100026 (2022). https://doi.org/10.1016/j.meafoo.2022.100026

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors are grateful also to the Federal University of Rio Grande do Norte (UFRN), Federal University of Ceará (UFC), Federal University of Campina Grande (UFCG) for technical support.

Author information

Authors and Affiliations

Authors

Contributions

NCS: conceptualization, methodology, investigation, formal analysis, writing (draft and review), and visualization. RLJA: dara curation and writing (draft and review). GMS: formal analysis. JCA: formal analysis. RSS: data curation. LPSN: software. JVFF: methodology. LSSP: validation. ROC: methodology. NMAJ: formal analysis. YASB: conceptualization. VMAS: supervision, project administration and writing (draft and review). All authors read and approved the manuscript.

Corresponding author

Correspondence to Newton Carlos Santos.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

Ethics approval was not required for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, N.C., Almeida, R.L.J., da Silva, G.M. et al. Effects of high hydrostatic pressure (HHP) on the rheological properties of pulp nectarine and the spray drying on the powder properties. Food Measure 17, 5644–5659 (2023). https://doi.org/10.1007/s11694-023-02081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02081-6

Keywords

Navigation