Skip to main content
Log in

Endogenous modulation of oxidative stress and inflammation in rats fed with optimized plantain based flour and dough blends

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Researches are gradually drifting towards adoption of food as therapies for the management of diseases that result from metabolic derangement, in extension genetical diseases can as well be managed by functional and nutritional diet that will maintain health of an individual through life. Diabetes mellitus is not an exception, there are several functional meals designed for the management of diabetes, many of these have unripe plantain as the base, with emphasis on just glycemic response limiting the antioxidant and anti-inflammatory influence. The aim of this study is to formulate a functional and optimized diet of unripe plantain base containing soycake and rice bran and compare the antidiabetic potentials of the well known cerolina and unripe plantain with the formulated optimized blend which will be in both flour and dough forms. Determine the effects that cooking of the flour samples could have on the antioxidant and overall antidiabetic potentials, through the comparison of the dough and flour. The uripe mature plantain, rice bran and soybean cake were obtained, response surface methodology (RSM) was used to establish the combination of the flour samples, and the runs generated were screened by proximate analysis and sensory evaluation to select the best blend regarded as the optimized flour blend. Dough meal (PSRD) was prepared from the optimized flour blend (PSRF) and the antidiabetic (α-amylase and α-glucosidase) and antioxidant (DPPH and hydroxyl scavenging, metal chelating activities and ferric reducing antioxidant power) effects were evaluated (in vitro). Male Wistar rats were obtained and subjected to 4-week high fat diet and low dose of streptozotocin (35 mg/kg i.p.), the animals were screened for manifestation of hyperglycemic signs and divided into eight (8) groups which included the positive control, and groups treated with PSRD, PSRF, PLTF, PLTD, CERF, CERD and glybenclamide, the ninth group is the negative control. The doughs and flours, and glybenclamide were administered orally for twenty-eight (28) days. The pancreas and liver were excised from anesthetized rats and subjected to histological and biochemical evaluations. The biochemical evaluations could be divided into antioxidant (activities of GST, GPx, catalase and superoxide dismutase and concentrations of NP-SH, GSH and MDA) and anti-inflammation (MPO, XO, TNF-α, IL-1β and IL-6). The results confirmed the relationship between diabetes mellitus, oxidative stress, inflammation and pro-inflammatory cytokines. The optimized dough sample had higher inhibition of α-amylase and α-glucosidase activities than the flour blend. The optimized dough sample further demonstrated antioxidant and anti-inflammatory protection against pancreatic and hepatic dysfunctions that could ensue as a result of type-2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figs. 7 and 8
Figs. 9 and 10
Figs. 11 and 12
Figs. 13 and 14
Figs. 15 and 16
Figs. 17 and 18
Figs. 19 and 20
Figs. 19 and 20
Figs. 21 and 22
Figs. 23, 24 and 25
Plates 1–9
Plates 10–18

Similar content being viewed by others

References

  1. V.O. Falusi, S. Oluwayomi, B. Imoukhuede, G.O. Oladipo, Alstonia boonei leaf mitigated deleterious effects of experimental type-II-diabetes-mellitus against pancreatic and neurocognitive functions. Asian J. Res. Biochem. (2021). https://doi.org/10.9734/ajrb/2021/v8i230176

    Article  Google Scholar 

  2. G.O. Oladipo, C.M. Nlekerem, E.O. Ibukun, A.O. Kolawole, Quail (Coturnix japonica) egg yolk bioactive components attenuate streptozotocin-induced testicular damage and oxidative stress in diabetic rats. Eur. J. Nutr. (2017). https://doi.org/10.1007//s00394-017-1554-4

    Article  PubMed  Google Scholar 

  3. W.W. Hammeso, Y.F. Emiru, K.A. Getahun, W. Kahaliw, Antidiabetic and antihyperlipidemic activities of the leaf latex extract of Aloe megalacantha Baker (Aloaceae) in streptozotocin-induced diabetic model. Evid. Based Complement. Altern. Med. (2019). https://doi.org/10.1155/2019/8263786

    Article  Google Scholar 

  4. O.O. Erejuwa, Oxidative stress in diabetes mellitus: is there a role for hypoglycaemic drugs and/or antioxidants? Oxidat. Stress Dis. (2012). https://doi.org/10.5772/32741

    Article  Google Scholar 

  5. D.E. Garcia-Valle, L.A. Bello-Perez, P.C. Flores-Silva, A.-A. Edith, T. Juscelino, Extruded unripe plantain flour as an indigestible carbohydrate-rich ingredient. Front. Nutr. 6, 2 (2019). https://doi.org/10.3389/fnut.2019.00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O.S. Ijarotimi, T.D. Oluwajuyitan, G.T. Ogunmola, Nutritional, functional and sensory properties of gluten-free composite flour produced from plantain (Musa AAB), tigernut tubers (Cyperus esculentus) and defatted soybean cake (Glycine max). Croat. J. Food Sci. Technol. 11(1), 1131–1251 (2019)

    Google Scholar 

  7. F.D. Odebode, O.T. Ekeleme, O.S. Ijarotimi, S.A. Malomo, A.O. Idowu, A.A. Badejo et al., Nutritional composition, antidiabetic and antilipidemic potentials of flour blends made from unripe plantain, soybean cake, and rice bran. J. Food Biochem. 42(4), e12447 (2017)

    Google Scholar 

  8. C. Daou, H. Zhang, Functional and physiological properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran. J. Food Sci. Technol. 51(12), 3878–3885 (2014). https://doi.org/10.1007/s13197-013-0925-y

    Article  CAS  PubMed  Google Scholar 

  9. E.O. Anajekwu, B. Maziya-Dixon, R. Akinoso, W. Awoyale, E.O. Alamu, Physicochemical properties and total carotenoid content of high-quality unripe plantain flour from varieties of hybrid plantain cultivars. J. Chem. (2020). https://doi.org/10.1155/2020/5960346

    Article  Google Scholar 

  10. T.D. Oluwajuyitan, O.S. Ijarotimi, Nutritional, antioxidant, glycaemic index and antihyperglycaemic properties of improved traditional plantain-based (Musa ABB), dough meal enriched with tigernut (Cyperus esculentus) and defatted soybeans (Glycine max) cake for diabetics patients. Heliyon 5, e1504–e1509 (2019)

    Google Scholar 

  11. M.J. Franz, E.S. Horton, J.P. Bantle, C.A. Beebe, J.D. Brunzell, A.M. Coulston, R.R. Henry, B.J. Hoogwerf, P.W. Stacpoole, Nutrition principles for the management off diabetes and related complications. Diabetes Care 17, 490–518 (1994). https://doi.org/10.2337/diacare.17.5.490

    Article  CAS  PubMed  Google Scholar 

  12. Association of Official Aalytical Chemist, AOAC Official Methods of Analysis of the Analytical Chemistry International, 18th edn. (Gathersburg, MD, 2012)

  13. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 299, 152–177 (1999)

    CAS  Google Scholar 

  14. A. Meda, C.E. Lamien, M. Romito, J. Millogo, O.G. Nacoulma, Determination of the total phenolic, flavonoid and proline contents in Burkina Faso honey, as well as their radical scavenging activity. Food Chem. 91, 571–577 (2005)

    CAS  Google Scholar 

  15. L.P. Leong, G. Shui, An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 76, 65–75 (2002)

    Google Scholar 

  16. H.Y. Zhang, C.S. Liu, A study of the SOD-like activity of some copper (II)-small peptide and amino acid complexes. Acta. Biochim. Biophys. Sin. 22, 593–594 (1990)

    Google Scholar 

  17. B. Halliwell, J.M.C. Gutteridge, O.I. Aruoma, The deoxyribose method: a simple ‘test tube’ assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165, 215–219 (1987)

    CAS  PubMed  Google Scholar 

  18. J.F. Haro-Vicente, C. Martinez-Gracia, G. Ros, Optimisation of in vitro measurement of available iron from different fortification in citric fruit juices. J. Food Chem. 98, 639–648 (2006)

    CAS  Google Scholar 

  19. J.H. Sheikh, M.T. Tsujiyama, A.I. Md, S.B. Rajat, A. Hitoshi, Total phenolic content, anti-oxidative, anti-amylase, anti-glucosidase and anti-histamine release activities of Bangladeshi fruits. Food Sci. Technol. Res. 14, 261–268 (2008)

    Google Scholar 

  20. A.K. Tiwari, M. Swapna, S.B. Ayesha, A. Zehra, S.B. Agawane, K. Madhusudana, Identification of proglycemic and antihyperglycemic activity in antioxidant rich fraction of some common food grains. Int. Food Res. J. 18, 915–923 (2011)

    CAS  Google Scholar 

  21. C. Qian, C. Zhu, W. Yu, X. Jiang, F. Zhang, High-fat diet/low-dose streptozotocin induced type 2 diabetes in rats impacts osteogenesis and Wnt signaling in bone marrow stromal cells. PLoS ONE 10(8), e0136390 (2015). https://doi.org/10.1371/journal.pone.0136390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A.K. Sinha, Colorimetric assay of catalase. Anal. Biochem. 47(2), 389–394 (1972)

    CAS  PubMed  Google Scholar 

  23. V. Adam-Vizi, M. Seregi, Receptor dependent stimulatory effect of noradrenaline on Na+/K+ ATPase in rat brain homogenate: role of lipid peroxidation. Biochem. Pharmacol. 31, 2231–2236 (1982)

    CAS  PubMed  Google Scholar 

  24. H.P. Misra, I. Fridovich, The role of superoxide anion I the autoxidation of epinephrine and a simple assay for superoxide dismustase. J. Biol. Chem. 247(10), 3170–3175 (1972)

    CAS  PubMed  Google Scholar 

  25. D.J. Jollow, J.R. Mitchel, N. Zampoglione, J.R. Gillete, Bromobenzene induced liver necrosis: protective role of gluthathione and evidence for 3.4-bromobenzene oxide as the heptotoxicetabolite. Pharmacology 11, 151–169 (1974)

    CAS  PubMed  Google Scholar 

  26. E. Beutler, O. Duron, B.M. Kelly, Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882–890 (1963)

    CAS  PubMed  Google Scholar 

  27. I. Rahman, A. Kode, S. Biswas, Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1(6), 3159–3165 (2006)

    CAS  PubMed  Google Scholar 

  28. G.C. Jain, R.N. Jangir, Modulation of diabetes-mellitus induced male reproductive dysfunctions in experimental animal models with medicinal plants. Pharmacogn. Rev. 8(16), 113–121 (2014)

    PubMed  PubMed Central  Google Scholar 

  29. J.P. Eiserich, M. Hristova, C.E. Cross, A.D. Jones, B.A. Freeman, B. Halliwell, A. van der Vliet, Formation of nitric oxide derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391, 393–397 (1998)

    CAS  PubMed  Google Scholar 

  30. N. Pradja, G. Weber, Malignant transformation-linked imbalance: decreased xanthine oxidase activity in hepatomas. FEBS Lett. 59(2), 245–249 (1975). https://doi.org/10.1016/0014-5793(75)80385-1

    Article  Google Scholar 

  31. G. Mukaddes, G. Ahmet, A. Ferah, Vitamine E protects against oxidative damage caused by formaldehyde in the liver and plasma of rats. Mol. Cell Biochem. 290, 61–67 (2006)

    Google Scholar 

  32. W. Willett, J. Manson, S. Liu, Glycemic index, glycemic load, and risk of type 2 diabetes. Am. J. Clin. Nutr. 76, 274–280 (2002)

    Google Scholar 

  33. C. Sarawong, R. Schoenlechner, K. Sekiguchi, E. Berghofer, P.K.W. Ng, Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chem. 143, 33–39 (2014)

    CAS  PubMed  Google Scholar 

  34. T.B. Tribess, J.P. Hernández-Uribe, M.G.C. Mendez-Montealvo, E.W. Menezes, L.A. Bello-Perez, C.C. Tadini, Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT 42, 1022–1025 (2009)

    CAS  Google Scholar 

  35. S.A. Shodehinde, G. Oboh, Antioxidant properties of aqueous extracts of unripe (Musa paradisiaca) on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro. Asian Pac. J. Trop. Biomed. 3(2013), 449–457 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. S.A. Shodehinde, A.O. Ademiluyi, G. Oboh, A.A. Akindahunsi, Contribution of Musa paradisiaca in the inhibition of α-amylase, α-glucosidase and angiotensin-I converting enzyme in streptozotocin induced rats. Life Sci. (2015). https://doi.org/10.1016/j.lfs.2015.03.026

    Article  PubMed  Google Scholar 

  37. E. Gutierrez, T. Wang, W.R. Fehr, Quantification of sphingolipids in soybeans. J. Am. Oil Chem. Soc. 81, 737–742 (2004)

    CAS  Google Scholar 

  38. S.J. Lee, J.J. Kim, H.I. Moon, J.K. Ahn, S.C. Chun, W.S. Jung, O.K. Lee, I.M. Chung, Analysis of isoflavones and phenolic compounds in Korean soybean Glycine max (L.) seeds of different seed weights. J. Agric. Food Chem. 56, 2751–2758 (2008)

    CAS  PubMed  Google Scholar 

  39. D.L. Luthria, R. Biswas, S. Natarajan, Comparison of extraction solvents andtechniques used for the assay of isoflavones from soybean. Food Chem. 105, 325–333 (2007)

    CAS  Google Scholar 

  40. M. Sohail, A. Rakha, M.S. Butt, M.J. Iqbal, S. Rashid, Rice brannutraceutics: a comprehensive review. Crit. Rev. Food Sci. Nutr. 57(17), 3771–3780 (2017). https://doi.org/10.1080/10408398.2016.1164120

    Article  CAS  PubMed  Google Scholar 

  41. M.R. Law, Plant sterol and stanol margarines and health. West. J. Med. 173, 43–47 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. S.P. Kochhar, Stable and healthful frying oil for the 21th century. Inform 11, 642–647 (2000)

    Google Scholar 

  43. T. Wang, K.B. Hicks, R. Moreau, Antioxidant activity of phytosterols, oryzanol, and other phytosterol conjugates. JAOCS 79(12), 2002 (2002)

    Google Scholar 

  44. K. Sharma, E.Y. Ko, A.D. Assefa, S. Ha, S.H. Nile, E.T. Lee, S.W. Park, Temperature-dependent studies on the totalphenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. J. Food Drug Anal. 2015(23), 243–252 (2015)

    Google Scholar 

  45. D.A. Carter, F.D. Souza, B.J. Simkins, W.G. Simpson, The gender and ethnic diversity of us boards and board committees and firm financial performance. Corp. Gov.: Int. Rev. 18(5), 396–414 (2010)

    Google Scholar 

  46. S.M. Firdous, Phytochemicals for treatment of diabetes. Excil J. 13, 451–453 (2014)

    CAS  Google Scholar 

  47. J.C. Pickup, Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27, 813–823 (2004)

    PubMed  Google Scholar 

  48. D. Chandler, A. Woldu, A. Rahmadi, K. Shanmugam, N. Steiner, E. Wright, O. Benavente-García, O. Schulz, J. Castillo, G. Münch, Effects of plant-derived polyphenols on TNF-α and nitric oxide production induced by advanced glycation end products. Mol. Nutr. Food Res. 54, S141–S150 (2010). https://doi.org/10.1002/mnfr.200900504

    Article  CAS  PubMed  Google Scholar 

  49. C.O. Eleazu, P.N. Okafor, A. Ikpeama, Total antioxidant capacity, nutritional composition and inhibitory activity of unripe plantain (Musa paradisiaca) on oxidative stress in alloxan induced diabetic rabbits. Pak. J. Nutr. 9, 1052–1057 (2010)

    CAS  Google Scholar 

  50. D.J. Jenkins, C.W. Kendall, L.S. Augustin, S. Franceschi, M. Hamidi, A. Marchie, M. Axelsen, Glycemic index: overview of implicationsin health and disease. Am. J. Clin. Nutr. 76, 266S–273S (2002). https://doi.org/10.1093/ajcn/76.1.266S

    Article  CAS  PubMed  Google Scholar 

  51. O.N. Donkor, L. Stojanovska, P. Ginn, J. Ashton, T. Vasiljevic, Germinated grains—sources of bioactive compounds. Food Chem. 135, 950–959 (2012). https://doi.org/10.1016/j.foodchem.2012.05.058

    Article  CAS  PubMed  Google Scholar 

  52. G.J. McDougall, D. Stewart, The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 23, 189–195 (2005)

    CAS  PubMed  Google Scholar 

  53. S.G. Haralampu, Resistant starch: a review of the physical properties and biological impact of RS3. Carbohydr. Polym. 41, 285–292 (2011)

    Google Scholar 

  54. E. Fuentes-Zaragoza, M.J. Riquelme-Navarrete, E. Sánchez-Zapata, J.A. Pérez-Alvarez, Resistant starch as functional ingredient: a review. Food Res. Int. 43, 931–942 (2010)

    CAS  Google Scholar 

  55. O.O. Oguntibeju, Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 11(3), 45–63 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. B. Lee, H. Lee, Y.R. Nam, J.H. Oh, Y.H. Cho, J.W. Chang, Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models. Gene Ther. 12, 1215–1222 (2005). https://doi.org/10.1038/sj.gt.3302520

    Article  CAS  PubMed  Google Scholar 

  57. K. Hanazaki, Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J. Gastroenterol. 15, 4137–4142 (2009)

    Google Scholar 

  58. J.W. Eriksson, Metabolic stress in insulin’s target cells leads to ROS accumulation—a hypothetical common pathway causing insulin resistance. FEBS Lett. 581, 3734–3742 (2007)

    CAS  PubMed  Google Scholar 

  59. B. Hazra, S. Biswas, N. Mandal, Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement Altern Med. 8, 63 (2008). https://doi.org/10.1186/1472-6882-8-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. K. Hensley, R.A. Floyd, Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch. Biochem. Biophys. 397, 377–383 (2002)

    CAS  PubMed  Google Scholar 

  61. P.S. Sellamuthu, P. Arulselvan, S. Kamalraj, S. Fakurazi, M. Kandasamy, Protective nature of mangiferin on oxidative stress and antioxidant status in tissues of streptozotocin-induced diabetic rats. ISRN Pharmacol. 2013, 750109 (2013). https://doi.org/10.1155/2013/750109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. S.A. Adefegha, G. Oboh, O.M. Adefegha, A.A. Boligon, M.L. Athayde, Antihyperglycemic, hypolipidemic, hepatoprotective and antioxidative effects of dietary clove (Szyzgium aromaticum) bud powder in a high-fat diet/streptozotocin induced diabetes rat model. J. Sci. Food Agric. 94, 2726–2737 (2014)

    CAS  PubMed  Google Scholar 

  63. S. Fakurazi, I. Hairuszah, U. Nanthini, Moringa oleifera Lam prevents acetaminophen induced liver injury through restoration of glutathione level. Food Chem. Toxicol. 46, 2611–2615 (2008)

    CAS  PubMed  Google Scholar 

  64. M. Nukatsuka, Y. Yoshimura, M. Nishida, J. Kawada, Allopurinol protects pancreatic beta cells from the cytotoxic effect of streptozotocin: in vitro study. J. Pharmacobiodyn. 13, 259–262 (1990)

    CAS  PubMed  Google Scholar 

  65. N. Takasu, I. Komiya, T. Asawa, Y. Nagasawa, T. Yamada, Streptozotocin-and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes 40, 1141–1145 (1991)

    CAS  PubMed  Google Scholar 

  66. J.C. Pickup, M.B. Mattock, G.D. Chusney, D. Burt, NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40(11), 1286–1292 (1997)

    CAS  PubMed  Google Scholar 

  67. K.T. Uysal, S.M. Wiesbrock, M.W. Marino, G.S. Hotamisligil, Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389(6651), 610–614 (1997)

    CAS  PubMed  Google Scholar 

  68. Z. Cai, Z.L. Pan, Y. Pang, O.B. Evans, P.G. Rhodes, Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res. 47, 64–72 (2005)

    Google Scholar 

  69. S. Liu, L. Tinker, Y. Song, N. Rifai, D.E. Bonds, N.R. Cook, G. Heiss, B.V. Howard, G.S. Hotamisligil, F.B. Hu, L.H. Kuller, J.E. Manson, A prospective study of inflammatory cytokines and diabetes mellitus in a multiethnic cohort of postmenopausal women. Arch. Intern. Med. 167(15), 1676–1685 (2007)

    CAS  PubMed  Google Scholar 

  70. A.D. Pradhan, N.R. Cook, J.E. Buring, J.E. Manson, P.M. Ridker, C-reactive protein is independently associated with fasting insulin in nondiabetic women. Arterioscler. Thromb. Vasc. Biol. 23(4), 650–655 (2003)

    CAS  PubMed  Google Scholar 

  71. A.D. Pradhan, J.E. Manson, N. Rifai, J.E. Buring, P.M. Ridker, C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3), 327–334 (2001)

    CAS  PubMed  Google Scholar 

  72. C.B. Guest, M.E. Hartman, J.C. O’Connor, K.S. Chakour, A.A. Sovari, G.G. Freund, Phagocytosis of cholesteryl ester is amplified in diabetic mouse macrophages and is largely mediated by CD36 and SR-A. PLoS ONE 2, e511 (2007)

    PubMed  PubMed Central  Google Scholar 

  73. J.C. O’Connor, A. Satpathy, M.E. Hartman, E.M. Horvath, K.W. Kelley, R. Dantzer, R.W. Johnson, G.G. Freund, IL-1beta-mediated innate immunity is amplified in the db/db mouse model of type 2 diabetes. J. Immunol. 174(8), 4991–4997 (2005)

    PubMed  Google Scholar 

  74. D.R. Johnson, J.C. O’Connor, M.E. Hartman, R.I. Tapping, G.G. Freund, Acute hypoxia activates the neuroimmune system, which diabetes exacerbates. J. Neurosci. 27(5), 1161–1166 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayo Oluwadunsin Olugbuyi.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olugbuyi, A.O., Oladipo, G.O., Malomo, S.A. et al. Endogenous modulation of oxidative stress and inflammation in rats fed with optimized plantain based flour and dough blends. Food Measure 17, 5929–5947 (2023). https://doi.org/10.1007/s11694-023-02071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02071-8

Keywords

Navigation