Skip to main content
Log in

Interaction with taxifolin reduces the digestibility of corn starch in vitro and in vivo

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Reducing the hydrolysis of starch in the gastrointestinal tract can improve postprandial hyperglycemia, which is beneficial for diabetes. The blends of corn starch with taxifolin (CS-Tax) were prepared with different taxifolin proportion. Iodine binding test showed that taxifolin can occupy the helix of starch, and the affinity is stronger than that of iodine. FTIR and XRD characterization revealed secondary interaction between taxifolin and starch in the blends, and the crystallization of taxifolin was suppressed. Taxifolin decreased the gelatinization temperature and enthalpy for starch. Scanning electron microscopy showed that the morphology of the blends was the same as starch granules. In vitro digestion experiment showed that taxifolin could slow down starch hydrolysis. Compared with native starch, the content of rapidly digestible starch in CS-10%Tax decreased from 56.35 to 49.20%, while the content of resistant starch increased from 17.62 to 29.61%. The comparison in vivo showed that after intragastric administration of CS-10%Tax in rats, the increase of blood glucose slowed down and the maximum decreased from 7.1 to 6.2 mM. Hence, taxifolin is prospective in preparing low glycemic index starchy foods and deserves further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.G. Sajilata, R.S. Singhal, P.R. Kulkarni, Resistant starch–a review. Compr. Rev. Food Sci. Food Saf. 5, 1–17 (2006). https://doi.org/10.1111/j.1541-4337.2006.tb00076.x

    Article  CAS  PubMed  Google Scholar 

  2. A. Perera, V. Meda, R.T. Tyler, Resistant starch: a review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res. Int. 43, 1959–1974 (2010). https://doi.org/10.1016/j.foodres.2010.06.003

    Article  CAS  Google Scholar 

  3. Z. Yang, Y. Zhang, Y. Wu, J. Ouyang, Factors influencing the starch digestibility of starchy foods: a review. Food Chem. 406, 135009 (2022). https://doi.org/10.1016/j.foodchem.2022.135009

    Article  CAS  PubMed  Google Scholar 

  4. C. Yang, F. Zhong, H.D. Goff, Y. Li, Study on starch-protein interactions and their effects on physicochemical and digestible properties of the blends. Food Chem. 280, 51–58 (2019). https://doi.org/10.1016/j.foodchem.2018.12.028

    Article  CAS  PubMed  Google Scholar 

  5. W.R. Morrison, Starch lipids and how they related to starch granule structure and functionality. Cereal Foods World 40, 437–446 (1995)

    CAS  Google Scholar 

  6. C.G. Fraga, K.D. Croft, D.O. Kennedy, F.A. Tomás-Barberán, The effects of polyphenols and other bioactives on human health. Food Funct. 10, 514–528 (2019). https://doi.org/10.1039/C8FO01997E

    Article  CAS  PubMed  Google Scholar 

  7. X. Han, M. Zhang, R. Zhang, L. Huang, X. Jia, F. Huang, L. Liu, Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes. LWT-Food Sci. Technol. 125, 109227 (2020). https://doi.org/10.1016/j.lwt.2020.109227

    Article  CAS  Google Scholar 

  8. M. Wang, Q. Shen, L. Hu, Y. Hu, X. Ye, D. Liu, J. Chen, Physicochemical properties, structure and in vitro digestibility on complex of starch with lotus (Nelumbo nucifera Gaertn.) Leaf flavonoids. Food Hydrocoll. 81, 191–199 (2018). https://doi.org/10.1016/j.foodhyd.2018.02.020

    Article  CAS  Google Scholar 

  9. N. Deng, Z. Deng, C. Tang, C. Liu, S. Luo, T. Chen, X. Hu, Formation, structure and properties of the starch-polyphenol inclusion complex: a review. Trends Food. Sci. Technol 112, 667–675 (2021). https://doi.org/10.1016/j.tifs.2021.04.032

    Article  CAS  Google Scholar 

  10. S. Zhu, B. Liu, F. Wang, D. Huang, F. Zhong. Y. Li, Characterization and in vitro digestion properties of cassava starch and epigallocatechin-3-gallate (EGCG) blend. LWT-Food Sci. Technol. 137, 110398 (2021). https://doi.org/10.1016/j.lwt.2020.110398

    Article  CAS  Google Scholar 

  11. T. He, K. Wang, L. Zhao, Y. Chen, W. Zhou, F. Liu, Z. Hu, Interaction with longan seed polyphenols affects the structure and digestion properties of maize starch. Carbohydr. Polym. 256, 117537 (2021). https://doi.org/10.1016/j.carbpol.2020.117537

    Article  CAS  PubMed  Google Scholar 

  12. A. Das, R. Baidya, T. Chakraborty, A.K. Samanta, S. Roy, Pharmacological basis and new insights of taxifolin: a comprehensive review. Biomed. Pharmacother 142, 112004 (2021). https://doi.org/10.1016/j.biopha.2021.112004

    Article  CAS  PubMed  Google Scholar 

  13. D. Turck, J.L. Bresson, B. Burlingame, T. Dean, S. Fairweather-Tait, H. Van Loveren, Scientific opinion on taxifolin‐rich extract from Dahurian Larch (Larix gmelinii). EFSA J. 15, e04682 (2017). https://doi.org/10.2903/j.efsa.2017.4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H. Su, Y.T. Ruan, Y. Li, J.G. Chen, Z.P. Yin, Q.F. Zhang, In vitro and in vivo inhibitory activity of taxifolin on three digestive enzymes. Int. J. Biol. Macromol. 150, 31–37 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.027

    Article  CAS  PubMed  Google Scholar 

  15. X.L. Qiu, Q.F. Zhang, Acidic hydrolysis of astilbin and its application for the preparation of taxifolin from Rhizoma Smilacis Glabrae. J. Chem. Res. 45, 290–294 (2021). https://doi.org/10.1177%2F1747519820948357

    Article  CAS  Google Scholar 

  16. B.O. Juliano, C.M. Perez, A.B. Blakeney, T. Castillo, N. Kongseree, B. Laignelet, B.D. Webb, International cooperative testing on the amylose content of milled rice. Starke 33, 157–162 (1981). https://doi.org/10.1002/star.19810330504

    Article  CAS  Google Scholar 

  17. L.G.J.M.A. Segal, J.J. Creely Jr., A.E. Martin, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959). https://doi.org/10.1177%2F004051755902901003

    Article  CAS  Google Scholar 

  18. S. Nara, T.J.S.S. Komiya, Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starke 35, 407–410 (1983). https://doi.org/10.1002/star.19830351202

    Article  CAS  Google Scholar 

  19. A. Goñi, I. Garcia-Alonso, F. Saura-Calixto, A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 17, 427–437 (1997). https://doi.org/10.1016/S0271-5317(97)00010-9

    Article  Google Scholar 

  20. H.N. Englyst, S.M. Kingman, J.H. Cummings, Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46, S33–S50 (1992)

    PubMed  Google Scholar 

  21. H. Wang, J. Lv, S. Jiang, B. Niu, M. Pang, S. Jiang, Preparation and characterization of porous corn starch and its adsorption toward grape seed proanthocyanidins. Starke 68, 1254–1263 (2016). https://doi.org/10.1002/star.201600009

    Article  CAS  Google Scholar 

  22. D. Fan, W. Ma, L. Wang, J. Huang, J. Zhao, H. Zhang, W. Chen, Determination of structural changes in microwaved rice starch using Fourier transform infrared and raman spectroscopy. Starke 64, 598–606 (2012). https://doi.org/10.1002/star.201100200

    Article  CAS  Google Scholar 

  23. F.C. Stenger Moura, N. Pinna, R. Vivani, G.E. Nunes, A. Schoubben, T.M. Bellé Bresolin, M. Ricci, Exploring Taxifolin Polymorphs: Insights on Hydrate and Anhydrous Forms. Pharmaceutics 13, 1328 (2021). https://doi.org/10.3390/pharmaceutics13091328

    Article  CAS  PubMed  Google Scholar 

  24. L. Gao, T. Zhu, F. He, Z. Ou, J. Xu, L. Ren, Preparation and characterization of functional films based on chitosan and corn starch incorporated tea polyphenols. Coatings 11, 817 (2021). https://doi.org/10.3390/coatings11070817

    Article  CAS  Google Scholar 

  25. L. Chen, Y. Tian, B. Sun, C. Cai, R. Ma, Z. Jin, Measurement and characterization of external oil in the fried waxy maize starch granules using ATR-FTIR and XRD. Food Chem. 242, 131–138 (2018). https://doi.org/10.1016/j.foodchem.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  26. R.P. Terekhov, I.A. Selivanova, N.A. Tyukavkina, I.R. Ilyasov, A.K. Zhevlakova, A.V. Dzuban, T.G. Kabluchko, Assembling the puzzle of taxifolin polymorphism. Molecules 25, 5437 (2020). https://doi.org/10.3390/molecules25225437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. X. Zhou, B.K. Baik, R. Wang, S.T. Lim, Retrogradation of waxy and normal corn starch gels by temperature cycling. J. Cereal Sci. 51, 57–65 (2010). https://doi.org/10.1016/j.jcs.2009.09.005

    Article  CAS  Google Scholar 

  28. X. Huaxi, L. Qinlu, L. Gao-Qiang, W. Yue, T. Wei, W. Wei, F. Xiangjin, Effect of green tea polyphenols on the gelatinization and retrogradation of rice starches with different amylose contents. Res. J. Medicinal Plant. 5, 4298–4303 (2011). https://doi.org/10.5897/JMPR.9000481

    Article  Google Scholar 

  29. F. Zhu, Y.Z. Cai, M. Sun, H. Corke, Effect of phytochemical extracts on the pasting, thermal, and gelling properties of wheat starch. Food Chem. 112, 919–923 (2009). https://doi.org/10.1016/j.foodchem.2008.06.079

    Article  CAS  Google Scholar 

  30. M. Li, C. Ndiaye, S. Corbin, E.A. Foegeding, M.G. Ferruzzi, Starch-phenolic complexes are built on physical CH-π interactions and can persist after hydrothermal treatments altering hydrodynamic radius and digestibility of model starch-based foods. Food Chem. 308, 125577 (2020). https://doi.org/10.1016/j.foodchem.2019.125577

    Article  CAS  PubMed  Google Scholar 

  31. Y. Wu, Q. Lin, Z. Chen, H. Xiao, The interaction between tea polyphenols and rice starch during gelatinization. Food Sci. Technol. Int. 17, 569–577 (2011). https://doi.org/10.1177%2F1082013211430294

    Article  CAS  PubMed  Google Scholar 

  32. D.B. Amoako, J.M. Awika, Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Food Chem. 285, 326–333 (2019). https://doi.org/10.1016/j.foodchem.2019.01.173

    Article  CAS  PubMed  Google Scholar 

  33. J.P. Yang, H. He, Y.H. Lu, Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms. J. Agric. Food Chem. 62, 7760–7770 (2014). https://doi.org/10.1021/jf501931m

    Article  CAS  PubMed  Google Scholar 

  34. U. Takahama, S. Hirota, Interactions of flavonoids with α-amylase and starch slowing down its digestion. Food Funct. 9, 677–687 (2018). https://doi.org/10.1039/C7FO01539A

    Article  CAS  PubMed  Google Scholar 

  35. K. Rehman, T.A. Chohan, I. Waheed, Z. Gilani, M.S.H. Akash, Taxifolin prevents postprandial hyperglycemia by regulating the activity of α-amylase: evidence from an in vivo and in silico studies. J. Cell. Biochem. 120, 425–438 (2019). https://doi.org/10.1002/jcb.27398

    Article  CAS  PubMed  Google Scholar 

  36. M. Li, L.E. Griffin, S. Corbin, A.P. Neilson, M.G. Ferruzzi, Modulating phenolic bioaccessibility and glycemic response of starch-based foods in wistar rats by physical complexation between starch and phenolic acid. J. Agric. Food Chem. 68, 13257–13266 (2020). https://doi.org/10.1021/acs.jafc.0c01387

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant 32060541).

Author information

Authors and Affiliations

Authors

Contributions

Mang-Mang Li: Investigation, Methodology, Data curation, Formal analysis, Writing original draft. Rui-Yan Peng: Investigation; Wen-Jun Wang: Supervision. Hai-Xia Xu: Investigation, Methodology, Data curation. Zhong-Ping Yin: Analysis, Validation. Ji-Guang Chen: Data curation, Formal analysis. Qing-Feng Zhang: Funding acquisition; Project administration; Resources; Supervision; Writing-review & editing.

Corresponding author

Correspondence to Qing-Feng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no financial and non-financial interests.

Ethics approval

The animal studies complied with guidelines of Jiangxi Agricultural University on animal care (Ethics Committee approval number: JXAULL-2021-76).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MM., Peng, RY., Wang, WJ. et al. Interaction with taxifolin reduces the digestibility of corn starch in vitro and in vivo. Food Measure 17, 4026–4033 (2023). https://doi.org/10.1007/s11694-023-01930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01930-8

Keywords

Navigation