Skip to main content
Log in

Valorization of plum (Prunus domestica) peels: microwave-assisted extraction, encapsulation and storage stability of its phenolic extract

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The objective of this study is to optimize a new extraction method of plum peels phenolics and its application in food industries, based on the microwave-assisted extraction (MAE) of phenolic compounds followed by their encapsulation by spray drying. Maltodextrin percentage in the coating material (30–70%), coating to core ratio (2:1–4:1) and air inlet temperature (130–190 °C) were selected as the independent variables according to a Box Behnken design, and their effects on response variables (encapsulation yield, encapsulation efficiency and moisture content) were evaluated. Optimum conditions were a maltodextrin percentage of 60%, a coating to core ratio of 4:1 and an inlet temperature of 190 °C. Under these conditions, the experimental response variables were an encapsulation efficiency of 94.64%, an encapsulation yield of 76.97% and a moisture content of 1.29% and were in strong agreement with predicted values. Detailed physicochemical analyses revealed that the optimum microcapsules had the high solubility and encapsulation efficiency, acceptable electrical and thermal stability and good morphological structure. Microcapsules color and antioxidant capacity were preserved during storage. These findings suggest the effectiveness of the optimized spray drying process for producing high quality microcapsules and the possibility of their use in functional foods or pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Shahidi, P. Ambigaipalan, Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects-a review. J. Funct. Foods 18, 820–897 (2015). https://doi.org/10.1016/j.jff.2015.06.018

    Article  CAS  Google Scholar 

  2. H.M. Soliman, H.A. Zahran, Synthesis of a new hydrophobic coating film from stearic acid of buffalo fat. Sci. Rep. 12, 1–11 (2022). https://doi.org/10.1038/s41598-022-23003-4

    Article  CAS  Google Scholar 

  3. M. Mitterer-Daltoé, J. Bordim, C. Lise et al., Consumer awareness of food antioxidants. Synthetic vs. natural. Food Sci Technol 2061, 1–5 (2020). https://doi.org/10.1590/fst.15120

    Article  Google Scholar 

  4. J. Pokorný, Are natural antioxidants better- and safer-than synthetic antioxidants? Eur. J. Lipid Sci. Technol. 109, 629–642 (2007). https://doi.org/10.1002/ejlt.200700064

    Article  Google Scholar 

  5. V. Coman, B.E. Teleky, L. Mitrea et al., Bioactive potential of fruit and vegetable wastes. Adv. Food Nutr. Res. 91, 157–225 (2020). https://doi.org/10.1016/bs.afnr.2019.07.001

    Article  CAS  PubMed  Google Scholar 

  6. A. Dasgupta, K. Klein, Fruits, Vegetables, and Nuts. Antioxidants in Food, Vitamins and Supplements: Prevention and Treatment of Disease (Academic Press, Boca Raton, 2014), pp.209–235

    Book  Google Scholar 

  7. A. Date, P. Phoenix, Assessment of biochemical composition and antioxidant properties of Algerian date palm (Phoenix dactylifera L.) seed oil. Plants 11(3), 381 (2022)

    Article  Google Scholar 

  8. Y. Li, B. Tang, J. Chen, P. Lai, Microencapsulation of plum (Prunus salicina lindl.) phenolics by spray drying technology and storage stability. Food Sci. Technol. 38, 530–536 (2018). https://doi.org/10.1590/1678-457x.09817

    Article  Google Scholar 

  9. V. Marcillo-Parra, D.S. Tupuna-Yerovi, Z. González, J. Ruales, Encapsulation of bioactive compounds from fruit and vegetable by-products for food application—a review. Trends Food Sci. Technol. 116, 11–23 (2021). https://doi.org/10.1016/j.tifs.2021.07.009

    Article  CAS  Google Scholar 

  10. H.A. Zahran, A.M.M. Mabrouk, H.H. Salama, Evaluation of yoghurt fortified with encapsulated echium oil rich in stearidonic acid as a low-fat dairy food. Egypt J. Chem. 65, 29–41 (2022). https://doi.org/10.21608/EJCHEM.2021.99859.4642

    Article  Google Scholar 

  11. S.S. Abozed, G.M. Elaraby, H.A. Zahran, Application of spray-dried microcapsules of purslane (Portulaca oleracea L.) seed oil enhances quality of mango juice. Open Agric. J. 15, 1–9 (2021). https://doi.org/10.2174/1874331502115010001

    Article  CAS  Google Scholar 

  12. H. Zahran, H. Bat, N. Şahin-Yeşilçubuk, Influence of wall material combination on the lipid oxidation of the hazelnut oil microcapsules. Discov. Food (2022). https://doi.org/10.1007/s44187-022-00018-4

    Article  Google Scholar 

  13. L.F. Ballesteros, M.J. Ramirez, C.E. Orrego et al., Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem. 237, 623–631 (2017). https://doi.org/10.1016/j.foodchem.2017.05.142

    Article  CAS  PubMed  Google Scholar 

  14. A. Tsali, A.M. Goula, Valorization of grape pomace: encapsulation and storage stability of its phenolic extract. Powder Technol. 340, 194–207 (2018). https://doi.org/10.1016/j.powtec.2018.09.011

    Article  CAS  Google Scholar 

  15. E. González, A.M. Gómez-Caravaca, B. Giménez et al., Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vitro gastrointestinal digestion. Food Chem. 279, 40–48 (2019). https://doi.org/10.1016/j.foodchem.2018.11.127

    Article  CAS  PubMed  Google Scholar 

  16. B. Bazaria, P. Kumar, Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). J. Saudi Soc. Agric. Sci. 17, 408–415 (2018). https://doi.org/10.1016/j.jssas.2016.09.007

    Article  Google Scholar 

  17. C.S. Singh, V.K. Paswan, D.C. Rai, Process optimization of spray dried Jamun (Syzygium cumini L.) pulp powder. LWT 109, 1–6 (2019). https://doi.org/10.1016/j.lwt.2019.04.011

    Article  CAS  Google Scholar 

  18. I. Elez Garofulić, Z. Zorić, S. Pedisić, V. Dragović-Uzelac, Retention of polyphenols in encapsulated sour cherry juice in dependence of drying temperature and wall material. LWT - Food Sci. Technol. 83, 110–117 (2017). https://doi.org/10.1016/j.lwt.2017.05.017

    Article  CAS  Google Scholar 

  19. S. Akhavan Mahdavi, S.M. Jafari, E. Assadpoor, D. Dehnad, Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int. J. Biol. Macromol. 85, 379–385 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  20. D. Krishnaiah, A. Bono, R. Sarbatly et al., Optimisation of spray drying operating conditions of Morinda citrifolia L. fruit extract using response surface methodology. J. King Saud Univ. Eng. Sci. 27, 26–36 (2015). https://doi.org/10.1016/j.jksues.2012.10.004

    Article  Google Scholar 

  21. P. Ibrahim Silva, P.C. Stringheta, Teof́ilo RF, De Oliveira IRN, Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. J. Food Eng. 117, 538–544 (2013). https://doi.org/10.1016/j.jfoodeng.2012.08.039

    Article  CAS  Google Scholar 

  22. B. Aliakbarian, F.C. Sampaio, J.T. de Faria et al., Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network. LWT 93, 220–228 (2018). https://doi.org/10.1016/j.lwt.2018.03.048

    Article  CAS  Google Scholar 

  23. V. Sablania, S.J.D. Bosco, Optimization of spray drying parameters for Murraya koenigii (Linn.) leaves extract using response surface methodology. Powder Technol. 335, 35–41 (2018). https://doi.org/10.1016/j.powtec.2018.05.009

    Article  CAS  Google Scholar 

  24. M. Navarro, I. Moreira, E. Arnaez et al., Polyphenolic characterization and antioxidant activity of Malus domestica and Prunus domestica cultivars from Costa Rica. Foods 7, 1 (2018). https://doi.org/10.3390/foods7020015

    Article  CAS  Google Scholar 

  25. F.V. Dulf, D.C. Vodnar, C. Socaciu, Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 209, 27–36 (2016). https://doi.org/10.1016/j.foodchem.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  26. M. Sójka, K. Kołodziejczyk, J. Milala et al., Composition and properties of the polyphenolic extracts obtained from industrial plum pomaces. J. Funct. Foods 12, 168–178 (2015). https://doi.org/10.1016/j.jff.2014.11.015

    Article  CAS  Google Scholar 

  27. H. Mechchate, I. Es-safi, H. Haddad et al., Combination of catechin, epicatechin, and rutin: optimization of a novel complete antidiabetic formulation using a mixture design approach. J. Nutr. Biochem. 88, 108520 (2021). https://doi.org/10.1016/j.jnutbio.2020.108520

    Article  CAS  PubMed  Google Scholar 

  28. B. Gullón, T.A. Lú-Chau, M.T. Moreira et al., Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 67, 220–235 (2017). https://doi.org/10.1016/j.tifs.2017.07.008

    Article  CAS  Google Scholar 

  29. H.P.V. Rupasinghe, N. Arumuggam, M. Amararathna, A.B.K.H. De Silva, The potential health benefits of haskap (Lonicera caerulea L.): role of cyanidin-3-O-glucoside. J. Funct. Foods 44, 24–39 (2018). https://doi.org/10.1016/j.jff.2018.02.023

    Article  CAS  Google Scholar 

  30. E. Bellocco, D. Barreca, G. Laganà et al., Cyanidin-3-O-galactoside in ripe pistachio (Pistachia vera L. variety Bronte) hulls: identification and evaluation of its antioxidant and cytoprotective activities. J. Funct. Foods 27, 376–385 (2016). https://doi.org/10.1016/j.jff.2016.09.016

    Article  CAS  Google Scholar 

  31. L. Yinbin, L. Wu, M. Weng et al., Effect of different encapsulating agent combinations on physicochemical properties and stability of microcapsules loaded with phenolics of plum (Prunus salicina lindl.). Powder Technol. 340, 459–464 (2018). https://doi.org/10.1016/j.powtec.2018.09.049

    Article  CAS  Google Scholar 

  32. A. Al-Weshahy, M. El-Nokety, M. Bakhete, V. Rao, Effect of storage on antioxidant activity of freeze-dried potato peels. Food Res. Int. 50, 507–512 (2013). https://doi.org/10.1016/j.foodres.2010.12.014

    Article  CAS  Google Scholar 

  33. Q.Q. Yang, R.Y. Gan, D. Zhang et al., Optimization of kidney bean antioxidants using RSM & ANN and characterization of antioxidant profile by UPLC-QTOF-MS. LWT 114, 108321 (2019). https://doi.org/10.1016/j.lwt.2019.108321

    Article  CAS  Google Scholar 

  34. A. Pandey, T. Belwal, K.C. Sekar et al., Optimization of ultrasonic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Ind. Crops Prod. 119, 218–225 (2018). https://doi.org/10.1016/j.indcrop.2018.04.019

    Article  CAS  Google Scholar 

  35. B. He, L.L. Zhang, X.Y. Yue et al., Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 204, 70–76 (2016). https://doi.org/10.1016/j.foodchem.2016.02.094

    Article  CAS  PubMed  Google Scholar 

  36. T. Belwal, P. Dhyani, I.D. Bhatt et al., Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chem. 207, 115–124 (2016). https://doi.org/10.1016/j.foodchem.2016.03.081

    Article  CAS  PubMed  Google Scholar 

  37. Y. Tao, P. Wang, J. Wang et al., Combining various wall materials for encapsulation of blueberry anthocyanin extracts: optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technol. 311, 77–87 (2017). https://doi.org/10.1016/j.powtec.2017.01.078

    Article  CAS  Google Scholar 

  38. B. Guldiken, G. Toydemir, K. Nur Memis et al., Home-processed red beetroot (Beta vulgaris L.) products: changes in antioxidant properties and bioaccessibility. Int J Mol Sci 17, 858 (2016). https://doi.org/10.3390/ijms17060858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Pal, P. Bhattacharjee, Spray dried powder of lutein-rich supercritical carbon dioxide extract of gamma-irradiated marigold flowers: process optimization, characterization and food application. Powder Technol. 327, 512–523 (2018). https://doi.org/10.1016/j.powtec.2017.12.085

    Article  CAS  Google Scholar 

  40. C. Urzúa, E. González, V. Dueik et al., Olive leaves extract encapsulated by spray-drying in vacuum fried starch–gluten doughs. Food Bioprod. Process. 106, 171–180 (2017). https://doi.org/10.1016/j.fbp.2017.10.001

    Article  CAS  Google Scholar 

  41. D.K. Pratami, A. Munm, M. Yohda et al., Total phenolic content and antioxidant activity of spray-dried microcapsules propolis from Tetragonula species. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5095018

    Article  Google Scholar 

  42. E. Firatligil-Durmus, O. Evranuz, Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). LWT - Food Sci. Technol. 43, 226–231 (2010). https://doi.org/10.1016/j.lwt.2009.08.017

    Article  CAS  Google Scholar 

  43. H. Karazhiyan, S.M.A. Razavi, G.O. Phillips, Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocoll. 25, 915–920 (2011). https://doi.org/10.1016/j.foodhyd.2010.08.022

    Article  CAS  Google Scholar 

  44. S.L. Taylor, M.E. Payton, W.R. Raun, Relationship between mean yield, coefficient of variation, mean square error, and plot size in wheat field experiments. Commun. Soil Sci. Plant Anal. 30, 1439–1447 (1999). https://doi.org/10.1080/00103629909370298

    Article  CAS  Google Scholar 

  45. M. Raghavachari, Applied multivariate statistics in geohydrology and related sciences. Technometrics 43, 110 (2001)

    Article  Google Scholar 

  46. M.A.B. Vaz, P.S. Pacheco, E.J. Seidel, A.P. Ansuj, Classification of the coefficient of variation to variables in beef cattle experiments. Ciência Rural 47, 9–12 (2017). https://doi.org/10.1590/0103-8478cr20160946

    Article  Google Scholar 

  47. J. Marques, VI International conference on computational bioengineering. use coeff var comp force-time curves from handgrip tests, pp. 1–7 (2015)

  48. Z. Šumić, A. Vakula, A. Tepić et al., Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chem. 203, 465–475 (2016). https://doi.org/10.1016/j.foodchem.2016.02.109

    Article  CAS  PubMed  Google Scholar 

  49. J. Rajewski, A. Dobrzyńska-Inger, Application of response surface methodology (RSM) for the optimization of chromium(III) synergistic extraction by supported liquid membrane. Membranes (Basel) (2021). https://doi.org/10.3390/membranes11110854

    Article  PubMed  Google Scholar 

  50. A.C. Mellinas, A. Jiménez, M.C. Garrigós, Optimization of microwave-assisted extraction of cocoa bean shell waste and evaluation of its antioxidant, physicochemical and functional properties. LWT 127, 109361 (2020). https://doi.org/10.1016/j.lwt.2020.109361

    Article  CAS  Google Scholar 

  51. Y. Wen, H. Chen, X. Zhou et al., Optimization of the microwave-assisted extraction and antioxidant activities of anthocyanins from blackberry using a response surface methodology. RSC Adv. 5, 19686–19695 (2015). https://doi.org/10.1039/c4ra16396f

    Article  CAS  Google Scholar 

  52. N.A. Mohammad, D.N. Abang Zaidel, I.I. Muhamad et al., Optimization of the antioxidant-rich xanthone extract from mangosteen (Garcinia mangostana L.) pericarp via microwave-assisted extraction. Heliyon 5, e02571 (2019). https://doi.org/10.1016/j.heliyon.2019.e02571

    Article  PubMed  PubMed Central  Google Scholar 

  53. A. Singh, K. Sabally, S. Kubow et al., Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules 16, 2218–2232 (2011). https://doi.org/10.3390/molecules16032218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M. Simsek, G. Sumnu, S. Sahin, Microwave assisted extraction of phenolic compounds from sour cherry pomace. Sep. Sci. Technol. 47, 1248–1254 (2012). https://doi.org/10.1080/01496395.2011.644616

    Article  CAS  Google Scholar 

  55. M. Pettinato, A.A. Casazza, P.F. Ferrari et al., Eco-sustainable recovery of antioxidants from spent coffee grounds by microwave-assisted extraction: process optimization, kinetic modeling and biological validation. Food Bioprod. Process. 114, 31–42 (2019). https://doi.org/10.1016/j.fbp.2018.11.004

    Article  CAS  Google Scholar 

  56. M. Hayta, E.M. İşçimen, Optimization of ultrasound-assisted antioxidant compounds extraction from germinated chickpea using response surface methodology. LWT - Food Sci. Technol. 77, 208–216 (2017). https://doi.org/10.1016/j.lwt.2016.11.037

    Article  CAS  Google Scholar 

  57. Y. Zhang, H. Tang, Y. Zheng et al., Optimization of ultrasound-assisted extraction of poly-phenols from Ajuga ciliata Bunge and evaluation of antioxidant activities in vitro. Heliyon 5, e02733 (2019). https://doi.org/10.1016/j.heliyon.2019.e02733

    Article  PubMed  PubMed Central  Google Scholar 

  58. N. Raval, R. Maheshwari, D. Kalyane et al., Importance of Physicochemical Characterization Of nanoparticles in Pharmaceutical product development (Elsevier, Amsterdam, 2018)

    Google Scholar 

  59. XII. Simpósio, D.E.H. Enzimática, A.B.A.C. Braga, et al, Characterization of Encapsulating Agents and Production of Microcapsules of Trichoderma Asperellum. Xxi Simpósio Nac Bioprocessos (2017)

  60. J. L. Ford, R. Willson, Handbook of Thermal Analysis and Calorimetry. Vol. 4: From Macromolecules to Man. Handb Therm Anal Calorimetry Vol 4 From Macromol to Man 4:923–1016 (1999)

  61. S.D. Kalyankar, M.A. Deshmukh, S.S. Chopde et al., Milk Powder, 1st edn. (Elsevier Ltd, Amsterdam, 2015)

    Google Scholar 

  62. N. Paul, Rotational Molding, Applied Plastics Engineering Handbook (Elsevier Inc, Amsterdam, 2017)

    Google Scholar 

  63. S.F. Alves, L.L. Borges, T.O. dos Santos et al., Microencapsulation of essential oil from fruits of Pterodon emarginatus using gum arabic and maltodextrin as wall materials: composition and stability. Dry Technol. 32, 96–105 (2014). https://doi.org/10.1080/07373937.2013.816315

    Article  CAS  Google Scholar 

  64. V.M. Balcão, C.I. Costa, C.M. Matos et al., Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll. 32, 425–431 (2013). https://doi.org/10.1016/j.foodhyd.2013.02.004

    Article  CAS  Google Scholar 

  65. Z. Li, A.T. Paulson, T.A. Gill, Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. J. Funct. Foods 19, 733–743 (2015). https://doi.org/10.1016/j.jff.2015.09.058

    Article  CAS  Google Scholar 

  66. Z.E. da Rosa, A.C. Telles, S.L. Mello El Halal et al., Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT-Food Sci. Technol. 59, 841–848 (2014). https://doi.org/10.1016/j.lwt.2014.05.013

    Article  CAS  Google Scholar 

  67. R. Santiago-Adame, L. Medina-Torres, J.A. Gallegos-Infante et al., Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT 64, 571–577 (2015). https://doi.org/10.1016/j.lwt.2015.06.020

    Article  CAS  Google Scholar 

  68. D. Akgün, M. Gültekin-Özgüven, A. Yücetepe et al., Stirred-type yoghurt incorporated with sour cherry extract in chitosan-coated liposomes. Food Hydrocoll. (2020). https://doi.org/10.1016/j.foodhyd.2019.105532

    Article  Google Scholar 

  69. V. Lavelli, P.S.C. Sri Harsha, G. Spigno, Modelling the stability of maltodextrin-encapsulated grape skin phenolics used as a new ingredient in apple puree. Food Chem. 209, 323–331 (2016). https://doi.org/10.1016/j.foodchem.2016.04.055

    Article  CAS  PubMed  Google Scholar 

  70. S. Hosseini, K. Parastouei, F. Khodaiyan, Simultaneous extraction optimization and characterization of pectin and phenolics from sour cherry pomace. Int. J. Biol. Macromol. 158, 911–921 (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.241

    Article  CAS  PubMed  Google Scholar 

  71. J.E. Cruz-Espinoza, A. Orduña-Díaz, M. Rosales-Perez et al., FTIR analysis of phenolic extracts from Moringa oleifera leaves. J. Biom. Biostat. 11, 2802 (2012)

    Google Scholar 

  72. İ Okur, C. Baltacıoğlu, E. Ağçam et al., Evaluation of the effect of different extraction techniques on sour cherry Pomace phenolic content and antioxidant activity and determination of phenolic compounds by FTIR and HPLC. Waste Biomass Valor. 10, 3545–3555 (2019). https://doi.org/10.1007/s12649-019-00771-1

    Article  CAS  Google Scholar 

  73. R.N. Oliveira, M.C. Mancini, F.C.S. de Oliveira et al., Análise por FTIR e quantificação de fenóis e flavonóides de cinco produtos naturais disponíveis comercialmente utilizados no tratamento de feridas. Rev. Mater. 21, 767–779 (2016). https://doi.org/10.1590/S1517-707620160003.0072

    Article  CAS  Google Scholar 

  74. K. Ramachandraiah, K.B. Chin, Evaluation of ball-milling time on the physicochemical and antioxidant properties of persimmon by-products powder. Innov. Food Sci. Emerg. Technol. 37, 115–124 (2016). https://doi.org/10.1016/j.ifset.2016.08.005

    Article  CAS  Google Scholar 

  75. T. İnanç Horuz, K.B. Belibağlı, Nanoencapsulation by electrospinning to improve stability and water solubility of carotenoids extracted from tomato peels. Food Chem. 268, 86–93 (2018). https://doi.org/10.1016/j.foodchem.2018.06.017

    Article  CAS  PubMed  Google Scholar 

  76. M. Mzoughi, E. Demircan, O. Turan, E. Firatligil,  B. Ozcelik, Optimization of microwave assisted extraction of phenolic compounds from Turkish purple plum (Prunus domestica) peels using response surface methodology. In: INTERNATIONAL GRADUATE RESEARCH SYMPOSIUM - IGRS’22. Istanbul: Graduate School, Istanbul Technical University (2022)

Download references

Acknowledgements

This work is supported by a scientific research project (BAP; Bilimsel Araştirma Projeleri) from Istanbul Technical University with the Number MDK-2020-42735.

Funding

This work was supported by ITU BAP Project (Istanbul Technical University, Scientific Research Projects Department) with the Grant Number MDK-2020-42735.

Author information

Authors and Affiliations

Authors

Contributions

MM: resources, methodology, formal analysis, investigation, writing- original draft preparation, writing- reviewing and editing. ED: resources, writing- reviewing and editing. OYT: writing- reviewing and editing. EF: project administration, conceptualization, methodology, resources, investigation. BO: conceptualization, methodology.

Corresponding author

Correspondence to Mondher Mzoughi.

Ethics declarations

Conflict of interest

I declare that the authors have no competing financial and/or non-financial interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mzoughi, M., Demircan, E., Turan, O.Y. et al. Valorization of plum (Prunus domestica) peels: microwave-assisted extraction, encapsulation and storage stability of its phenolic extract. Food Measure 17, 3753–3773 (2023). https://doi.org/10.1007/s11694-023-01893-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01893-w

Keywords

Navigation