Skip to main content

Advertisement

Log in

A systematic account of food adulteration and recent trends in the non-destructive analysis of food fraud detection

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Food safety and authenticity have become a serious concern among consumers worldwide. Economically motivated practices of food fraud can have widespread implications for public health and reduce the overall food quality. As such, there is a rapidly increasing requirement for more sensitive and accurate methods to detect deliberate adulteration of food commodities. An attempt to summarize the present status of adulterated foods, the most common adulterants used, and the non-destructive methods to detect food fraud, has been made in this review article. The techniques and modern methods of food adulteration detection including NIR, FTIR, Raman spectroscopy, NMR, e-nose/e-tongue, and LIBS have been discussed. The methods of qualitative and quantitative data analysis have a significant role in the determination of process efficiency and as such a comprehensive knowledge of the process and recent applications discussed in the review would be of high interest to solve food adulteration problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J. Spink, D.C. Moyer, Defining the public health threat of food fraud. J. Food Sci. 76(9), R157–R163 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. D.I. Ellis, V.L. Brewster, W.B. Dunn, J.W. Allwood, A.P. Golovanov, R. Goodacre, Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chem. Soc. Rev. 41(17), 5706–5727 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. P. Singh, N. Gandhi, Milk preservatives and adulterants: processing, regulatory and safety issues. Food Rev. Int. 31(3), 236–261 (2015)

    Article  CAS  Google Scholar 

  4. M.M. El-Loly, A.I.A. Mansour, R.O. Ahmed, Evaluation of raw milk for common commercial additives and heat treatments. Internet J. Food Saf. 15(10), 7–10 (2013)

  5. A. Choudhary, N. Gupta, F. Hameed, S. Choton, An overview of food adulteration: concept, sources, impact, challenges and detection. Int. J. Chem. Stud. 8(1), 2564–2573 (2020)

    Article  Google Scholar 

  6. R. Johnson, Food Fraud and Economically Motivated Adulteration of Food and Food Ingredients (Congressional Research Service, Washington, D.C., 2014)

    Google Scholar 

  7. L. Asensio, I. González, T. García, R. Martín, Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 19(1), 1–8 (2008)

    Article  CAS  Google Scholar 

  8. D.M. Marcus, A.P. Grollman, Botanical medicines—the need for new regulations. N. Engl. J. Med. 347(25), 2073 (2002)

    Article  PubMed  Google Scholar 

  9. G.P. Danezis, A.S. Tsagkaris, F. Camin, V. Brusic, C.A. Georgiou, Food authentication: techniques, trends & emerging approaches. Trends Anal. Chem. 85, 123–132 (2016)

    Article  CAS  Google Scholar 

  10. E. Arendse, H. Nieuwoudt, L.S. Magwaza, J.F.I. Nturambirwe, O.A. Fawole, U.L. Opara, Recent advancements on vibrational spectroscopic techniques for the detection of authenticity and adulteration in horticultural products with a specific focus on oils, juices and powders. Food Bioprocess Technol. (2020). https://doi.org/10.1007/s11947-020-02505-x

    Article  Google Scholar 

  11. J.C. Moore, J. Spink, M. Lipp, Development and application of a database of food ingredient fraud and economically. J. Food Sci. 77, R108–R116 (2012)

    Google Scholar 

  12. R.K. Chen, L.W. Chang, Y.Y. Chung, M.H. Lee, Y.C. Ling, Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18(10), 1167–1171 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. J.S. Garcia, G.B. Sanvido, S.A. Saraiva, J.J. Zacca, R.G. Cosso, M.N. Eberlin, Bovine milk powder adulteration with vegetable oils or fats revealed by MALDI-QTOF MS. Food Chem. 131(2), 722–726 (2012)

    Article  CAS  Google Scholar 

  14. P.M. Santos, E.R. Pereira-Filho, L.E. Rodriguez-Saona, Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food Chem. 138(1), 19–24 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. G. Bilge, B. Sezer, K.E. Eseller, H. Berberoglu, A. Topcu, I.H. Boyaci, Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy. Food Chem. 212, 183–188 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. S. Das, B. Goswami, K. Biswas, Milk adulteration and detection: a review. Sens. Lett. 14(1), 4–18 (2016)

    Article  Google Scholar 

  17. T. de Oliveira Mendes, B.L.S. Porto, M.J.V. Bell, Í.T. Perrone, M.A.L. de Oliveira, Capillary zone electrophoresis for fatty acids with chemometrics for the determination of milk adulteration by whey addition. Food Chem. 213, 647–653 (2016)

    Article  PubMed  Google Scholar 

  18. P.M. Santos, E.R. Pereira-Filho, L.A. Colnago, Detection and quantification of milk adulteration using time domain nuclear magnetic resonance (TD-NMR). Microchem. J. 124, 15–19 (2016)

    Article  CAS  Google Scholar 

  19. F. Mabood, F. Jabeen, M. Ahmed, J. Hussain, S.A. Al Mashaykhi, Z.M. Al Rubaiey, S. Farooq, R. Boqué, L. Ali, Z. Hussain, A. Al-Harrasi, A.L. Khan, Z. Naureen, M. Idrees, S. Manzoor, Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk. Food Chem. 221, 746–750 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. S. Moncayo, S. Manzoor, J.D. Rosales, J. Anzano, J.O. Caceres, Qualitative and quantitative analysis of milk for the detection of adulteration by laser induced breakdown spectroscopy (LIBS). Food Chem. 232, 322–328 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. L. Du, W. Lu, Z.J. Cai, L. Bao, C. Hartmann, B. Gao, L.L. Yu, Rapid detection of milk adulteration using intact protein flow injection mass spectrometric fingerprints combined with chemometrics. Food Chem. 240, 573–578 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. M. Tohidi, M. Ghasemi-Varnamkhasti, V. Ghafarinia, M. Bonyadian, S.S. Mohtasebi, Development of a metal oxide semiconductor-based artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration. Int. Dairy J. 77, 38–46 (2018)

    Article  CAS  Google Scholar 

  23. P.W. Hansen, S.E. Holroyd, Development and application of Fourier transform infrared spectroscopy for detection of milk adulteration in practice. Int. J. Dairy Technol. 72(3), 321–331 (2019)

    CAS  Google Scholar 

  24. C.V. Di Anibal, M. Odena, I. Ruisánchez, M.P. Callao, Determining the adulteration of spices with Sudan I-II-II-IV dyes by UV–visible spectroscopy and multivariate classification techniques. Talanta 79(3), 887–892 (2009)

    Article  PubMed  Google Scholar 

  25. C.V. Di Anibal, I. Ruisánchez, M.P. Callao, High-resolution 1H nuclear magnetic resonance spectrometry combined with chemometric treatment to identify adulteration of culinary spices with Sudan dyes. Food Chem. 124(3), 1139–1145 (2011)

    Article  Google Scholar 

  26. C. Black, S.A. Haughey, O.P. Chevallier, P. Galvin-King, C.T. Elliott, A comprehensive strategy to detect the fraudulent adulteration of herbs: the oregano approach. Food Chem. 210, 551–557 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. E.A. Petrakis, M.G. Polissiou, Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics. Talanta 162, 558–566 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. P. Galvin-King, S.A. Haughey, H. Montgomery, C.T. Elliott, The rapid detection of sage adulteration using Fourier transform infra-red (FTIR) spectroscopy and chemometrics. J. AOAC Int. 102(2), 354–362 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. B. Horn, S. Esslinger, M. Pfister, C. Fauhl-Hassek, J. Riedl, Non-targeted detection of paprika adulteration using mid-infrared spectroscopy and one-class classification—is it data preprocessing that makes the performance? Food Chem. 257, 112–119 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. A.S. Wilde, S.A. Haughey, P. Galvin-King, C.T. Elliott, The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control 100, 1–7 (2019)

    Article  CAS  Google Scholar 

  31. E. Alexa, A. Dragomirescu, G. Pop, C. Jianu, D. Dragos, The use of FT-IR spectroscopy in the identification of vegetable oils adulteration. J. Food Agric. Environ. 7(2), 20–24 (2009)

    CAS  Google Scholar 

  32. R.M. El-Abassy, P. Donfack, A. Materny, Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration. J. Raman Spectrosc. 40(9), 1284–1289 (2009)

    Article  CAS  Google Scholar 

  33. A.M. Marina, Y.B. Che Man, S.A.H. Nazimah, I. Amin, Monitoring the adulteration of virgin coconut oil by selected vegetable oils using differential scanning calorimetry. J. Food Lipids 16(1), 50–61 (2009)

    Article  CAS  Google Scholar 

  34. H. Lizhi, K. Toyoda, I. Ihara, Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. J. Food Eng. 96(2), 167–171 (2010)

    Article  Google Scholar 

  35. B. Öztürk, A. Yalçin, D. Özdemir, Determination of olive oil adulteration with vegetable oils by near infrared spectroscopy coupled with multivariate calibration. J. Near Infrared Spectrosc. 18(3), 191–201 (2010)

    Article  Google Scholar 

  36. Q. Zhang, A.S. Saleh, Q. Shen, Discrimination of edible vegetable oil adulteration with used frying oil by low field nuclear magnetic resonance. Food Bioprocess Technol. 6(9), 2562–2570 (2013)

    Article  CAS  Google Scholar 

  37. R. Salghi, W. Armbruster, W. Schwack, Detection of argan oil adulteration with vegetable oils by high-performance liquid chromatography–evaporative light scattering detection. Food Chem. 153, 387–392 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. D. Peng, Y. Bi, X. Ren, G. Yang, S. Sun, X. Wang, Detection and quantification of adulteration of sesame oils with vegetable oils using gas chromatography and multivariate data analysis. Food Chem. 188, 415–421 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. F. Lia, A.M. Castellano, M. Zammit-Mangion, C. Farrugia, Application of fluorescence spectroscopy and chemometric models for the detection of vegetable oil adulterants in Maltese virgin olive oils. J. Food Sci. Technol. 55(6), 2143–2151 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. T. Wang, H.L. Wu, W.J. Long, Y. Hu, L. Cheng, A.Q. Chen, R.Q. Yu, Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics. Food Chem. 293, 348–357 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. J.D. Kelly, G. Downey, Detection of sugar adulterants in apple juice using Fourier transform infrared spectroscopy and chemometrics. J. Agric. Food Chem. 53(9), 3281–3286 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. F. Tezcan, S. Uzaşçı, G. Uyar, N. Öztekin, F.B. Erim, Determination of amino acids in pomegranate juices and fingerprint for adulteration with apple juices. Food Chem. 141(2), 1187–1191 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. N. Nuncio-Jáuregui, Á. Calín-Sánchez, F. Hernández, Á.A. Carbonell-Barrachina, Pomegranate juice adulteration by addition of grape or peach juices. J. Sci. Food Agric. 94(4), 646–655 (2014)

    Article  PubMed  Google Scholar 

  44. J.D. Chang, H. Zheng, N. Mantri, L. Xu, Z. Jiang, J. Zhang, Z. Song, H. Lu, Chemometrics coupled with ultraviolet spectroscopy: a tool for the analysis of variety, adulteration, quality and ageing of apple juices. Int. J. Food Sci. Technol. 51(11), 2474–2484 (2016)

    Article  CAS  Google Scholar 

  45. D.I. Ellis, J. Ellis, H. Muhamadali, Y. Xu, A.B. Horn, R. Goodacre, Rapid, high-throughput, and quantitative determination of orange juice adulteration by Fourier-transform infrared spectroscopy. Anal. Methods 8(28), 5581–5586 (2016)

    Article  CAS  Google Scholar 

  46. F. Shen, Q. Wu, A. Su, P. Tang, X. ShAo, B. Liu, Detection of adulteration in freshly squeezed orange juice by electronic nose and infrared spectroscopy. Czech J. Food Sci. 34(3), 224–232 (2016)

    Article  CAS  Google Scholar 

  47. Z. Wang, J.E. Jablonski, Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics. Food Addit. Contam. A 33(3), 560–573 (2016)

    Article  CAS  Google Scholar 

  48. F. Mabood, J. Hussain, F. Jabeen, G. Abbas, B. Allaham, M. Albroumi, S. Alghawi, S. Alameri, S.A. Gilani, A. Al-Harrasi, Q.M.I. Haq, S. Farooq, Applications of FT-NIRS combined with PLS multivariate methods for the detection & quantification of saccharin adulteration in commercial fruit juices. Food Addit. Contam. A 35(6), 1052–1060 (2018)

    Article  CAS  Google Scholar 

  49. M. Kundu, S. Prasad, P. Krishnan, S. Gajjala, A novel electrochemical biosensor based on hematite (α-Fe2O3) flowerlike nanostructures for sensitive determination of formaldehyde adulteration in fruit juices. Food Bioprocess Technol. 12(10), 1659–1671 (2019)

    Article  CAS  Google Scholar 

  50. J.C. Chen, Q.H. Chen, Q. Guo, S. Ruan, H. Ruan, G.Q. He, Q. Gu, Simultaneous determination of acetoin and tetramethylpyrazine in traditional vinegars by HPLC method. Food Chem. 122(4), 1247–1252 (2010)

    Article  CAS  Google Scholar 

  51. Y. Liu, C. He, H. Song, Comparison of fresh watermelon juice aroma characteristics of five varieties based on gas chromatography-olfactometry-mass spectrometry. Food Res. Int. 107, 119–129 (2018)

    Article  CAS  PubMed  Google Scholar 

  52. X. Mi, J. Yang, L. Cao, X. Wei, Y. Zhu, Q. Li, X. Liu, X. He, Q. Liao, Z. Yan, Potential DNA markers as a rapid tracing tool for animal adulterants in vegetarian food. Food Res. Int. 76, 926–931 (2015)

    Article  CAS  Google Scholar 

  53. Y. He, X. Bai, Q. Xiao, F. Liu, L. Zhou, C. Zhang, Detection of adulteration in food based on nondestructive analysis techniques: a review. Crit. Rev. Food Sci. Nutr. (2020). https://doi.org/10.1080/10408398.2020.1777526

    Article  PubMed  Google Scholar 

  54. W.H. Su, H.J. He, D.W. Sun, Non-destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review. Crit. Rev. Food Sci. Nutr. 57(5), 1039–1051 (2017)

    Article  CAS  PubMed  Google Scholar 

  55. B. Elzey, D. Pollard, S.O. Fakayode, Determination of adulterated neem and flaxseed oil compositions by FTIR spectroscopy and multivariate regression analysis. Food Control 68, 303–309 (2016)

    Article  CAS  Google Scholar 

  56. P.I. Richardson, H. Muhamadali, D.I. Ellis, R. Goodacre, Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics. Food Chem. 272, 157–164 (2019)

    Article  CAS  PubMed  Google Scholar 

  57. K. Timsorn, Y. Lorjaroenphon, C. Wongchoosuk, Identification of adulteration in uncooked Jasmine rice by a portable low-cost artificial olfactory system. Measurement 108, 67–76 (2017)

    Article  Google Scholar 

  58. H.S. El-Mesery, H. Mao, A.E.F. Abomohra, Applications of non-destructive technologies for agricultural and food products quality inspection. Sensors 19(4), 846 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  59. J.K. Winkler-Moser, M. Singh, K.A. Rennick, E.L. Bakota, G. Jham, S.X. Liu, S.F. Vaughn, Detection of corn adulteration in Brazilian coffee (Coffea arabica) by tocopherol profiling and near-infrared (NIR) spectroscopy. J. Agric. Food Chem. 63(49), 10662–10668 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. F. Cai-li, L. Ying, C. Li-fan, W. Shao-yun, W. Wu, Rapid detection of lotus seed powder based on near infrared spectrum technology. Spectrosc. Spectr. Anal. 38(2), 424–429 (2018)

    Google Scholar 

  61. Y. Fan, F. Cheng, L. Xie, Quantitative analysis and detection of adulteration in pork using near-infrared spectroscopy. Sens. Agric. Food Qual. Saf. II 7676, 76760X (2010)

    Google Scholar 

  62. Y.S. Liu, S.B. Zhou, Rapid detection of hydrolyzed leather protein adulteration in infant formula by near-infrared spectroscopy. Food Sci. Technol. Res. 23(3), 469–474 (2017)

    Article  CAS  Google Scholar 

  63. L. Xu, P.T. Shi, Z.H. Ye, S.M. Yan, X.P. Yu, Rapid analysis of adulterations in Chinese lotus root powder (LRP) by nearinfrared (NIR) spectroscopy coupled with chemometric class modeling techniques. Food Chem. 141(3), 2434–2439 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. H. Chen, C. Tan, Z. Lin, T. Wu, Detection of melamine adulteration in milk by near-infrared spectroscopy and one-class partial least squares. Spectrochim. Acta A 173, 832–836 (2017)

    Article  CAS  Google Scholar 

  65. M.I. López, E. Trullols, M.P. Callao, I. Ruisanchez, Multivariate screening in food adulteration: untargeted versus targeted modelling. Food Chem. 147, 177–181 (2014)

    Article  PubMed  Google Scholar 

  66. X.X. Ding, Y.N. Ni, K. Serge, NIR spectroscopy and chemometrics for the discrimination of pure, powdered, purple sweet potatoes and their samples adulterated with the white sweet potato flour. Chemom. Intell. Lab. Syst. 144, 17–23 (2015)

    Article  CAS  Google Scholar 

  67. Y. Huang, K. Tian, S. Min, Y. Xiong, G. Du, Distribution assessment and quantification of counterfeit melamine in powdered milk by NIR imaging methods. Food Chem. 177, 174–181 (2015)

    Article  CAS  PubMed  Google Scholar 

  68. R.J. Yang, G.M. Dong, X.S. Sun, Y.R. Yang, H.X. Liu, Y.H. Du, H. Jin, W.Y. Zhang, Discrimination of sesame oil adulterated with corn oil using information fusion of synchronous and asynchronous two-dimensional near-mid infrared spectroscopy. Eur. J. Lipid Sci. Technol. 119(9), 1600459 (2017)

    Article  Google Scholar 

  69. E. Deniz, E. Güneş Altuntaş, B. Ayhan, N. İğci, D. Özel Demiralp, K. Candoğan, Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. J. Food Process. Preserv. 42(10), e13767 (2018)

    Article  Google Scholar 

  70. M.I. Alkhalf, M.E.S. Mirghani, Detection of formaldehyde in cheese using FTIR spectroscopy. Int. Food Res. J. 24(Suppl), S496–S500 (2017)

    CAS  Google Scholar 

  71. S. Lohumi, R. Joshi, L.M. Kandpal, H. Lee, M.S. Kim, H. Cho, C. Mo, Y.W. Seo, A. Rahman, B.K. Cho, Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy. Food Addit. Contam. A 34(5), 678–686 (2017)

    CAS  Google Scholar 

  72. P. Jaiswal, S.N. Jha, A. Borah, A. Gautam, M.K. Grewal, G. Jindal, Detection and quantification of soymilk in cow–buffalo milk using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR–FTIR). Food Chem. 168, 41–47 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. N.U.R.C.A.N. Koca, N.A. Kocaoglu-Vurma, W.J. Harper, L.E. Rodriguez-Saona, Application of temperature-controlled attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy for rapid estimation of butter adulteration. Food Chem. 121(3), 778–782 (2010)

    Article  CAS  Google Scholar 

  74. B. Li, H. Wang, Q. Zhao, J. Ouyang, Y. Wu, Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: a comparative study. Food Chem. 181, 25–30 (2015)

    Article  CAS  PubMed  Google Scholar 

  75. A. Rohman, Y. Erwanto, Y.B.C. Man, Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Sci. 88(1), 91–95 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. R.M. Maggio, L. Cerretani, E. Chiavaro, T.S. Kaufman, A. Bendini, A novel chemometric strategy for the estimation of extra virgin olive oil adulteration with edible oils. Food Control 21(6), 890–895 (2010)

    Article  CAS  Google Scholar 

  77. C.S.W. Miaw, C. Assis, A.R.C.S. Silva, M.L. Cunha, M.M. Sena, S.V.C. de Souza, Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods. Food Chem. 254, 272–280 (2018)

    Article  CAS  PubMed  Google Scholar 

  78. S. Lee, S. Lohumi, H.S. Lim, T. Gotoh, B.K. Cho, M.S. Kim, S.H. Lee, Development of a detection method for adulterated onion powder using Raman spectroscopy. J. Fac. Agric. Kyushu Univ. 60(1), 151–156 (2015)

    Article  CAS  Google Scholar 

  79. A. Nedeljković, P. Rösch, J. Popp, J. Miočinović, M. Radovanović, P. Pudja, Raman spectroscopy as a rapid tool for quantitative analysis of butter adulterated with margarine. Food Anal. Methods 9(5), 1315–1320 (2016)

    Article  Google Scholar 

  80. M.Q. Zou, X.F. Zhang, X.H. Qi, H.L. Ma, Y. Dong, C.W. Liu, X.U. Guo, H. Wang, Rapid authentication of olive oil adulteration by Raman spectrometry. J. Agric. Food Chem. 57(14), 6001–6006 (2009)

    Article  CAS  PubMed  Google Scholar 

  81. Y. Cheng, Y. Dong, J. Wu, X. Yang, H. Bai, H. Zheng, D. Ren, Y. Zou, M. Li, Screening melamine adulterant in milk powder with laser Raman spectrometry. J. Food Compos. Anal. 23(2), 199–202 (2010)

    Article  CAS  Google Scholar 

  82. G.Y. Tiryaki, H. Ayvaz, Quantification of soybean oil adulteration in extra virgin olive oil using portable Raman spectroscopy. J. Food Meas. Charact. 11(2), 523–529 (2017)

    Article  Google Scholar 

  83. X. Feng, Q. Zhang, P. Cong, Z. Zhu, Preliminary study on classification of rice and detection of paraffin in the adulterated samples by Raman spectroscopy combined with multivariate analysis. Talanta 115, 548–555 (2013)

    Article  CAS  PubMed  Google Scholar 

  84. Z. Chen, T. Wu, C. Xiang, X. Xu, X. Tian, Rapid identification of rainbow trout adulteration in Atlantic salmon by Raman spectroscopy combined with machine learning. Molecules 24(15), 2851 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. H. Eksi-Kocak, O. Mentes-Yilmaz, I.H. Boyaci, Detection of green pea adulteration in pistachio nut granules by using Raman hyperspectral imaging. Eur. Food Res. Technol. 242(2), 271–277 (2016)

    Article  CAS  Google Scholar 

  86. S. Li, Y. Shan, X. Zhu, X. Zhang, G. Ling, Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J. Food Compos. Anal. 28(1), 69–74 (2012)

    Article  Google Scholar 

  87. C. Márquez, M.I. López, I. Ruisánchez, M.P. Callao, FT-Raman and NIR spectroscopy data fusion strategy for multivariate qualitative analysis of food fraud. Talanta 161, 80–86 (2016)

    Article  PubMed  Google Scholar 

  88. X.F. Zhang, M.Q. Zou, X.H. Qi, F. Liu, X.H. Zhu, B.H. Zhao, Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy. J. Raman Spectrosc. 41(12), 1655–1660 (2010)

    Article  Google Scholar 

  89. A.M. Marina, Y.B. Che Man, I. Amin, Use of the SAW sensor electronic nose for detecting the adulteration of virgin coconut oil with RBD palm kernel olein. J. Am. Oil Chem. Soc. 87(3), 263–270 (2010)

    Article  CAS  Google Scholar 

  90. M. Xu, L. Ye, J. Wang, Z. Wei, S. Cheng, Quality tracing of peanuts using an array of metal-oxide based gas sensors combined with chemometrics methods. Postharvest Biol. Technol. 128, 98–104 (2017)

    Article  Google Scholar 

  91. K. Heidarbeigi, S.S. Mohtasebi, A. Foroughirad, M. Ghasemi-Varnamkhasti, S. Rafiee, K. Rezaei, Detection of adulteration in saffron samples using electronic nose. Int. J. Food Prop. 18(7), 1391–1401 (2015)

    Article  CAS  Google Scholar 

  92. X. Hong, J. Wang, S. Qiu, Authenticating cherry tomato juices—discussion of different data standardization and fusion approaches based on electronic nose and tongue. Food Res. Int. 60, 173–179 (2014)

    Article  CAS  Google Scholar 

  93. Y. Yu, H. Zhao, G. Dong, R. Yang, L. Li, Y. Liu, H. Wu, W. Zhang, Discrimination of milk adulterated with urea using voltammetric electronic tongue coupled with PCA-LSSVM. Int. J. Electrochem. Sci. 10(12), 10119–10131 (2015)

    CAS  Google Scholar 

  94. E. Várvölgyi, T. Werum, L. Dénes, J. Soós, G. Szabó, J. Felföldi, G. Esper, Z. Kovács, Vision system and electronic tongue application to detect coffee adulteration with barley. Acta Aliment. 43(Supplement-1), 197–205 (2014)

    Article  Google Scholar 

  95. S. Kiani, S. Minaei, M. Ghasemi-Varnamkhasti, Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection. Comput. Electron. Agric. 141, 46–53 (2017)

    Article  Google Scholar 

  96. H. Men, D. Chen, X. Zhang, J. Liu, K. Ning, Data fusion of electronic nose and electronic tongue for detection of mixed edible-oil. J. Sens. (2014). https://doi.org/10.1155/2014/840685

    Article  Google Scholar 

  97. G. Durante, W. Becari, F.A. Lima, H.E. Peres, Electrical impedance sensor for real-time detection of bovine milk adulteration. IEEE Sens. J. 16(4), 861–865 (2016)

    Article  CAS  Google Scholar 

  98. C. Das, S. Chakraborty, K. Acharya, N.K. Bera, D. Chattopadhyay, A. Karmakar, S. Chattopadhyay, FT-MIR supported electrical impedance spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta 171, 327–334 (2017)

    Article  CAS  PubMed  Google Scholar 

  99. B. Sezer, S. Durna, G. Bilge, A. Berkkan, A. Yetisemiyen, I.H. Boyaci, Identification of milk fraud using laser-induced breakdown spectroscopy (LIBS). Int. Dairy J. 81, 1–7 (2018)

    Article  CAS  Google Scholar 

  100. B. Sezer, H. Apaydin, G. Bilge, I.H. Boyaci, Detection of Pistacia vera adulteration by using laser induced breakdown spectroscopy. J. Sci. Food Agric. 99(5), 2236–2242 (2019)

    Article  CAS  PubMed  Google Scholar 

  101. T. Zhang, B. Wang, P. Yan, K. Wang, X. Zhang, H. Wang, Y. Lv, Nondestructive identification of salmon adulteration with water based on hyperspectral data. J. Food Qual. (2018). https://doi.org/10.1155/2018/1809297

    Article  Google Scholar 

  102. P. Mishra, A. Herrero-Langreo, P. Barreiro, J.M. Roger, B. Diezma, N. Gorretta, L. Lleo, Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis. J. Near Infrared Spectrosc. 23(1), 15–22 (2015)

    Article  CAS  Google Scholar 

  103. E.A. Petrakis, L.R. Cagliani, M.G. Polissiou, R. Consonni, Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by 1H NMR metabolite fingerprinting. Food Chem. 173, 890–896 (2015)

    Article  CAS  PubMed  Google Scholar 

  104. R.D.O.R. Ribeiro, E.T. Mársico, C. da Silva Carneiro, M.L.G. Monteiro, C.C. Júnior, E.F.O. de Jesus, Detection of honey adulteration of high fructose corn syrup by low field nuclear magnetic resonance (LF 1H NMR). J. Food Eng. 135, 39–43 (2014)

    Article  CAS  Google Scholar 

  105. Y. Hu, S. Wang, S. Wang, X. Lu, Application of nuclear magnetic resonance spectroscopy in food adulteration determination: the example of Sudan dye I in paprika powder. Sci. Rep. 7(1), 1–9 (2017)

    Google Scholar 

  106. J. Ma, D.W. Sun, J.H. Qu, D. Liu, H. Pu, W.H. Gao, X.A. Zeng, Applications of computer vision for assessing quality of agri-food products: a review of recent research advances. Crit. Rev. Food Sci. Nutr. 56(1), 113–127 (2016)

    Article  PubMed  Google Scholar 

  107. B.A. Mogol, V. Gökmen, Computer vision-based analysis of foods: a non-destructive colour measurement tool to monitor quality and safety. J. Sci. Food Agric. 94(7), 1259–1263 (2014)

    Article  CAS  PubMed  Google Scholar 

  108. J.C. Jimenez, F.M. Amores, E.G. Solórzano, G.A. Rodríguez, A. La Mantia, P. Blasi, R.G. Loor, Differentiation of Ecuadorian National and CCN-51 cocoa beans and their mixtures by computer vision. J. Sci. Food Agric. 98(7), 2824–2829 (2018)

    Article  CAS  PubMed  Google Scholar 

  109. W. Peng, L. Wang, Y. Qian, T. Chen, B. Dai, B. Feng, B. Wang, Discrimination of unfermented Pu’er Tea aroma of different years based on electronic nose. Agric. Res. 6(4), 436–442 (2017)

    Article  CAS  Google Scholar 

  110. X. Wei, X. Shao, Y. Wei, L. Cheong, L. Pan, K. Tu, Rapid detection of adulterated peony seed oil by electronic nose. J. Food Sci. Technol. 55(6), 2152–2159 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. M. Bougrini, K. Tahri, Z. Haddi, T. Saidi, N. El Bari, B. Bouchikhi, Detection of adulteration in argan oil by using an electronic nose and a volt-ammetric electronic tongue. J. Sens. (2014). https://doi.org/10.1155/2014/245831

    Article  Google Scholar 

  112. M. Bougrini, K. Tahri, T. Saidi, N.E.A. El Hassani, B. Bouchikhi, N. El Bari, Classification of honey according to geographical and botanical origins and detection of its adulteration using voltammetric electronic tongue. Food Anal. Methods 9(8), 2161–2173 (2016)

    Article  Google Scholar 

  113. M. Oroian, S. Paduret, S. Ropciuc, Honey adulteration detection: voltammetric e-tongue versus official methods for physicochemical parameter determination. J. Sci. Food Agric. 98(11), 4304–4311 (2018)

    Article  CAS  PubMed  Google Scholar 

  114. T.R. Paixão, M. Bertotti, Fabrication of disposable voltammetric electronic tongues by using Prussian Blue films electrodeposited onto CD-R gold surfaces and recognition of milk adulteration. Sens. Actuators B 137(1), 266–273 (2009)

    Article  Google Scholar 

  115. L. Sobrino-Gregorio, R. Bataller, J. Soto, I. Escriche, Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control 91, 254–260 (2018)

    Article  CAS  Google Scholar 

  116. P. Bertemes-Filho, L.H. Negri, A.S. Paterno, Detection of bovine milk adulterants using bioimpedance measurements and artificial neural network, in 5th European Conference of the International Federation for Medical and Biological Engineering (Springer, Berlin, Heidelberg, 2011), pp. 1275–1278

  117. M. Grossi, B. Riccò, Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J. Sens. Sens. Syst. 6(2), 303–325 (2017)

    Article  Google Scholar 

  118. P. Kuson, A. Terdwongworakul, Minimally-destructive evaluation of durian maturity based on electrical impedance measurement. J. Food Eng. 116(1), 50–56 (2013)

    Article  Google Scholar 

  119. D.T. Trung, N.P. Kien, T.D. Hung, T.A. Vu, Electrical impedance measurement for assessment of the pork aging: a preliminary study, in 2016 International Conference on Biomedical Engineering (BME-HUST). (IEEE, 2016), pp. 95–99

  120. C.S. Widodo, W. Sugianto, A.M. Effendi, G. Saroja, Study on the effect of sugar canes and saccharin to the value of electrical impedance of apple cider manalagi (Malus sylvestris Mill.). J. Phys.: Conf. Ser. 1153(1), 012121 (2019)

    CAS  Google Scholar 

  121. M. Chakraborty, K. Biswas, Limit of detection for five common adulterants in milk: a study with different fat percent. IEEE Sens. J. 18(6), 2395–2403 (2018)

    Article  CAS  Google Scholar 

  122. L.E. Rodriguez-Saona, M.E. Allendorf, Use of FTIR for rapid authentication and detection of adulteration of food. Ann. Rev. Food Sci. Technol. 2, 467–483 (2011)

    Article  CAS  Google Scholar 

  123. J.S. Shenk, J.J. Workman, M.O. Westerhaus, Application of NIR spectroscopy to agricultural products. Pract. Spectrosc. Ser. 27, 419–474 (2001)

    CAS  Google Scholar 

  124. A. Amirvaresi, N. Nikounezhad, M. Amirahmadi, B. Daraei, H. Parastar, Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy based on chemometrics for saffron authentication and adulteration detection. Food Chem. 344, 128647 (2021)

    Article  CAS  PubMed  Google Scholar 

  125. B.G. Osborne, Near‐infrared spectroscopy in food analysis, in Encyclopedia of analytical chemistry: Applications, theory and instrumentation (John Wiley & Sons, Ltd., New Jersey, US, 2006), pp. 1–14. https://doi.org/10.1002/9780470027318.a1018

  126. S. Duraisamy, M. Kasi, S. Balakrishnan, S. Al-Sohaibani, G. Ramasamy, Optimization of Lactobacillus brevis NS01 Brevicin production and its application in apple juice biopreservation using food-grade clarifying agent silica as a carrier. Food Bioprocess Technol. 8(8), 1750–1761 (2015)

    Article  CAS  Google Scholar 

  127. P.I. Richardson, H. Muhamadali, Y. Lei, A.P. Golovanov, D.I. Ellis, R. Goodacre, Detection of the adulteration of fresh coconut water via NMR spectroscopy and chemometrics. Analyst 144(4), 1401–1408 (2019)

    Article  CAS  PubMed  Google Scholar 

  128. W.B. Fischer, H.H. Eysel, O.F. Nielsen, J.E. Bertie, Corrections to the baseline distortions in the OH-stretch region of aqueous solutions. Appl. Spectrosc. 48(1), 107–112 (1994)

    Article  CAS  Google Scholar 

  129. P. Galvin-King, S.A. Haughey, C.T. Elliott, Garlic adulteration detection using NIR and FTIR spectroscopy and chemometrics. J. Food Compos. Anal. 96, 103757 (2021)

    Article  CAS  Google Scholar 

  130. A.A. Gowen, C.P. O’Donnell, P.J. Cullen, G. Downey, J.M. Frias, Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18(12), 590–598 (2007)

    Article  CAS  Google Scholar 

  131. M. Kamruzzaman, D.W. Sun, G. ElMasry, P. Allen, Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 103, 130–136 (2013)

    Article  CAS  PubMed  Google Scholar 

  132. A.T. Badaró, F.L. Morimitsu, A.R. Ferreira, M.T.P.S. Clerici, D.F. Barbin, Identification of fiber added to semolina by near infrared (NIR) spectral techniques. Food Chem. 289, 195–203 (2019)

    Article  PubMed  Google Scholar 

  133. C. Mees, F. Souard, C. Delporte, E. Deconinck, P. Stoffelen, C. Stévigny, J.M. Kauffmann, K. De Braekeleer, Identification of coffee leaves using FT-NIR spectroscopy and SIMCA. Talanta 177, 4–11 (2018)

    Article  CAS  PubMed  Google Scholar 

  134. A. Laborde, F. Puig-Castellví, D.J.R. Bouveresse, L. Eveleigh, C. Cordella, B. Jaillais, Detection of chocolate powder adulteration with peanut using near-infrared hyperspectral imaging and multivariate curve resolution. Food Control 119, 107454 (2021)

    Article  CAS  Google Scholar 

  135. L. Contal, V. León, G. Downey, Detection and quantification of apple adulteration in strawberry and raspberry purees using visible and near infrared spectroscopy. J. Near Infrared Spectrosc. 10(4), 289–299 (2002)

    Article  CAS  Google Scholar 

  136. L.G. Visconti, M.S. Rodriguez, C.V. Di Anibal, Determination of grated hard cheeses adulteration by near infrared spectroscopy (NIR) and multivariate analysis. Int. Dairy J. 104, 104647 (2020)

    Article  CAS  Google Scholar 

  137. M. Twomey, G. Downey, P.B. McNulty, The potential of NIR spectroscopy for the detection of the adulteration of orange juice. J. Sci. Food Agric. 67(1), 77–84 (1995)

    Article  CAS  Google Scholar 

  138. K.N. Basri, M.N. Hussain, J. Bakar, Z. Sharif, M.F.A. Khir, A.S. Zoolfakar, Classification and quantification of palm oil adulteration via portable NIR spectroscopy. Spectrochim. Acta A 173, 335–342 (2017)

    Article  CAS  Google Scholar 

  139. B.H. Stuart, L. Craft, S.L. Forbes, B.B. Dent, Studies of adipocere using attenuated total reflectance infrared spectroscopy. Forensic Sci. Med. Pathol. 1(3), 197–201 (2005)

    Article  CAS  PubMed  Google Scholar 

  140. S. Gok, M. Severcan, E. Goormaghtigh, I. Kandemir, F. Severcan, Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem. 170, 234–240 (2015)

    Article  CAS  PubMed  Google Scholar 

  141. K.M. Nunes, M.V.O. Andrade, A.M. Santos Filho, M.C. Lasmar, M.M. Sena, Detection and characterisation of frauds in bovine meat in natura by non-meat ingredient additions using data fusion of chemical parameters and ATR-FTIR spectroscopy. Food Chem. 205, 14–22 (2016)

    Article  CAS  PubMed  Google Scholar 

  142. K. Georgouli, J.M. Del Rincon, A. Koidis, Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data. Food Chem. 217, 735–742 (2017)

    Article  CAS  PubMed  Google Scholar 

  143. E. Wielogorska, O. Chevallier, C. Black, P. Galvin-King, M. Delêtre, C.T. Kelleher, S.A. Haughey, C.T. Elliott, Development of a comprehensive analytical platform for the detection and quantitation of food fraud using a biomarker approach. The oregano adulteration case study. Food Chem. 239, 32–39 (2018)

    Article  CAS  PubMed  Google Scholar 

  144. R. Ríos-Reina, R.M. Callejón, C. Oliver-Pozo, J.M. Amigo, D.L. García-González, ATR-FTIR as a potential tool for controlling high quality vinegar categories. Food Control 78, 230–237 (2017)

    Article  Google Scholar 

  145. R. Valand, S. Tanna, G. Lawson, L. Bengtström, A review of Fourier transform infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit. Contam. A 37(1), 19–38 (2020)

    Article  CAS  Google Scholar 

  146. B. Hoffman, Top 10 ‘at risk’ fraudulent foods and why you should feel scammed. Forbes (2013). https://www.forbes.com/sites/bethhoffman/2013/10/23/top-10-at-risk-fraudulent-foods-surprising-and-disheartening/?sh=31ec548d5945

  147. M. Tasumi, Introduction to infrared spectroscopy, in Introduction to experimental infrared spectroscopy: Fundamentals and practical methods. ed. by M. Tasumi (John Wiley & Sons, New Jersey, US, 2014), pp. 3-15

  148. C. Alamprese, M. Casale, N. Sinelli, S. Lanteri, E. Casiraghi, Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT 53(1), 225–232 (2013)

    Article  CAS  Google Scholar 

  149. S.A. Ordoudi, L.R. Cagliani, D. Melidou, M.Z. Tsimidou, R. Consonni, Uncovering a challenging case of adulterated commercial saffron. Food Control 81, 147–155 (2017)

    Article  CAS  Google Scholar 

  150. G. Ma, H.C. Allen, Handbook of spectroscopy, volumes 1 and 2 edited by Günter Gauglitz (University of Tübingen) and Tuan Vo-Dinh (Oak Ridge National Laboratory). Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. 2003. 1168 pp. $435.00. ISBN: 3-527-29782-0. J. Am. Chem. Soc. 28(126), 8859–8860 (2004)

    Article  Google Scholar 

  151. S.G. Kazarian, K.A. Chan, ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 138(7), 1940–1951 (2013)

    Article  CAS  PubMed  Google Scholar 

  152. E.K. Kemsley, J.K. Holland, M. Defernez, R.H. Wilson, Detection of adulteration of raspberry purees using infrared spectroscopy and chemometrics. J. Agric. Food Chem. 44(12), 3864–3870 (1996)

    Article  CAS  Google Scholar 

  153. V. Dixit, J.C. Tewari, B.K. Cho, J.M. Irudayaraj, Identification and quantification of industrial grade glycerol adulteration in red wine with Fourier transform infrared spectroscopy using chemometrics and artificial neural networks. Appl. Spectrosc. 59(12), 1553–1561 (2005)

    Article  CAS  PubMed  Google Scholar 

  154. P. Yang, R. Zhou, W. Zhang, S. Tang, Z. Hao, X. Li, Y. Lu, X. Zeng, Laser-induced breakdown spectroscopy assisted chemometric methods for rice geographic origin classification. Appl. Opt. 57(28), 8297–8302 (2018)

    Article  PubMed  Google Scholar 

  155. P. Qi, Y. Fan, H. Li, Q. Zhang, J. Zhai, Dielectric properties of Ba0.7Sr0.3TiO3 film at terahertz measured by metamaterials. J. Am. Ceram. Soc. 95(4), 1167–1169 (2012)

    Article  CAS  Google Scholar 

  156. F. Shen, Y.B. Ying, Applications of terahertz spectroscopy and imaging techniques in food safety inspection. Spectrosc. Spectr. Anal. 29(6), 1445–1449 (2009)

    CAS  Google Scholar 

  157. M. Kawase, Application of terahertz waves to food science. Food Sci. Technol. Res. 18(5), 601–609 (2012)

    Article  CAS  Google Scholar 

  158. S.K. Mathanker, P.R. Weckler, N. Wang, Terahertz (THz) applications in food and agriculture: a review. Trans. ASABE 56(3), 1213–1226 (2013)

    Google Scholar 

  159. C. Wang, J. Qin, W. Xu, M. Chen, L. Xie, Y. Ying, Terahertz imaging applications in agriculture and food engineering: A review. Trans. ASABE 61(2), 411–424 (2018)

    Article  CAS  Google Scholar 

  160. M.S. Kim, K. Chao, B.A. Chin, S. Dhakal, K. Chao, J. Qin, M. Kim, W. Schmidt, D. Chan, Detection ofmetanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy, in Proceedings of SPIE 9864 (2016). https://doi.org/10.1117/12.2223957

  161. K. Nallappan, J. Dash, S. Ray, B. Pesala, Identification of adulterants in turmeric powder using terahertz spectroscopy, in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). (IEEE, 2013), pp. 1–2

  162. J. Liu, Terahertz spectroscopy and chemometric tools for rapid identification of adulterated dairy product. Opt. Quant. Electron. 49(1), 1–8 (2017)

    Article  Google Scholar 

  163. K.M. Khan, H. Krishna, S.K. Majumder, P.K. Gupta, Detection of urea adulteration in milk using near-infrared Raman spectroscopy. Food Anal. Methods 8(1), 93–102 (2015)

    Article  Google Scholar 

  164. M. Lin, L. He, J. Awika, L. Yang, D.R. Ledoux, H.A. Li, A. Mustapha, Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. J. Food Sci. 73(8), T129–T134 (2008)

    Article  CAS  PubMed  Google Scholar 

  165. S. Lohumi, H. Lee, M.S. Kim, J. Qin, B.K. Cho, Through-packaging analysis of butter adulteration using line-scan spatially offset Raman spectroscopy. Anal. Bioanal. Chem. 410(22), 5663–5673 (2018)

    Article  CAS  PubMed  Google Scholar 

  166. W. Dong, Y. Zhang, B. Zhang, X. Wang, Quantitative analysis of adulteration of extra virgin olive oil using Raman spectroscopy improved by Bayesian framework least squares support vector machines. Anal. Methods 4(9), 2772–2777 (2012)

    Article  CAS  Google Scholar 

  167. H. Yang, J. Irudayaraj, M.M. Paradkar, Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem. 93(1), 25–32 (2005)

    Article  CAS  Google Scholar 

  168. C.W. Park, I. Lee, S.H. Kwon, K.S. Lee, C. Jo, D.K. Ko, Authentication of adulterated edible oil using coherent anti-Stokes Raman scattering spectroscopy. J. Raman Spectrosc. 48(10), 1330–1336 (2017)

    Article  CAS  Google Scholar 

  169. J. Qin, M.S. Kim, K. Chao, S. Dhakal, H. Lee, B.K. Cho, C. Mo, Detection and quantification of adulterants in milk powder using a high-throughput Raman chemical imaging technique. Food Addit. Contam. A 34(2), 152–161 (2017)

    Article  CAS  Google Scholar 

  170. C. Cordella, I. Moussa, A.C. Martel, N. Sbirrazzuoli, L. Lizzani-Cuvelier, Recent developments in food characterization and adulteration detection: technique-oriented perspectives. J. Agric. Food Chem. 50(7), 1751–1764 (2002)

    Article  CAS  PubMed  Google Scholar 

  171. M.F. Marcone, S. Wang, W. Albabish, S. Nie, D. Somnarain, A. Hill, Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int. 51(2), 729–747 (2013)

    Article  CAS  Google Scholar 

  172. A.P. Sobolev, S. Circi, L. Mannina, Advances in nuclear magnetic resonance spectroscopy for food authenticity testing, in Advances in Food Authenticity Testing (Woodhead Publishing, 2016), pp. 147–170

  173. C. Schmitt, T. Bastek, A. Stelzer, T. Schneider, M. Fischer, T. Hackl, Detection of peanut adulteration in food samples by nuclear magnetic resonance spectroscopy. J. Agric. Food Chem. 68(49), 14364–14373 (2020)

    Article  CAS  PubMed  Google Scholar 

  174. Y.B. Monakhova, W. Ruge, T. Kuballa, M. Ilse, O. Winkelmann, B. Diehl, F. Thomas, D.W. Lachenmeier, Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy. Food Chem. 182, 178–184 (2015)

    Article  CAS  PubMed  Google Scholar 

  175. M. Spiteri, E. Jamin, F. Thomas, A. Rebours, M. Lees, K.M. Rogers, D.N. Rutledge, Fast and global authenticity screening of honey using 1H-NMR profiling. Food Chem. 189, 60–66 (2015)

    Article  CAS  PubMed  Google Scholar 

  176. A.P. Sobolev, F. Thomas, J. Donarski, C. Ingallina, S. Circi, F.C. Marincola, D. Capitani, L. Mannina, Use of NMR applications to tackle future food fraud issues. Trends Food Sci. Technol. 91, 347–353 (2019)

    Article  CAS  Google Scholar 

  177. M.M. Bergana, K.M. Adams, J. Harnly, J.C. Moore, Z. Xie, Non-targeted detection of milk powder adulteration by 1H NMR spectroscopy and conformity index analysis. J. Food Compos. Anal. 78, 49–58 (2019)

    Article  CAS  Google Scholar 

  178. M.I. Milani, E.L. Rossini, T.A. Catelani, L. Pezza, A.T. Toci, H.R. Pezza, Authentication of roasted and ground coffee samples containing multiple adulterants using NMR and a chemometric approach. Food Control 112, 107104 (2020)

    Article  CAS  Google Scholar 

  179. G. Vigli, A. Philippidis, A. Spyros, P. Dais, Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils. J. Agric. Food Chem. 51(19), 5715–5722 (2003)

    Article  CAS  PubMed  Google Scholar 

  180. S. Esslinger, J. Riedl, C. Fauhl-Hassek, Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res. Int. 60, 189–204 (2014)

    Article  CAS  Google Scholar 

  181. E. Pérez-Castaño, C. Ruiz-Samblás, S. Medina-Rodríguez, V. Quirós-Rodríguez, A.M. Jiménez-Carvelo, L. Valverde-Som et al., Comparison of different analytical classification scenarios: application for the geographical origin of edible palm oil by sterolic (NP) HPLC fingerprinting. Anal. Methods 7, 4192–4201 (2015)

    Article  Google Scholar 

  182. M. Esteki, J. Simal-Gandara, Z. Shahsavaria, S. Zandbaaf, E. Dashtaki, Y.V. Heyden, A review on the application of chromatographic methods, coupled to chemometrics, for food authentication. Food Control 93, 165–182 (2018)

    Article  CAS  Google Scholar 

  183. J. Viaene, Y. Heyden Vander, Introduction to herbal fingerprinting by chromatography, in Chemometrics in chromatography. ed. by J. Sherma, L. Komsta, Y. Vander Heyden (CRC Press, Boca Raton, 2018), p.351

    Google Scholar 

  184. R. Aslam, M.S. Alam, A. Ali, Y. Tao, S. ManickamA chemometric approach to evaluate the effects of probe-type ultrasonication on the enzyme inactivation and quality attributes of fresh amla juice. Ultrason. Sonochem. 92, 106268 (2023)

    Article  CAS  PubMed  Google Scholar 

  185. D.J. Beale, P.D. Morrison, A.V. Karpe, M.S. Dunn, Chemometric analysis of lavender essential oils using targeted and untargeted GC-MS acquired data for the rapid identification and characterization of oil quality. Molecules (2017). https://doi.org/10.3390/molecules22081339

    Article  PubMed  PubMed Central  Google Scholar 

  186. M.J. Martínez Bueno, F.J. Díaz-Galiano, Ł Rajski, V. Cutillas, A.R. Fernández-Alba, A non-targeted metabolomic approach to identify food markers to support discrimination between organic and conventional tomato crops. J. Chromatogr. A 1546, 66–76 (2018)

    Article  PubMed  Google Scholar 

  187. B. Popping, E. De Dominicis, M. Dante, M. Nocetti, Identification of the geographic origin of Parmigiano Reggiano (P.D.O.) cheeses deploying non-targeted mass spectrometry and chemometrics. Foods 6, 13 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. C. Farley III., A. Kassu, N. Bose, A. Jackson-Davis, J. Boateng, P. Ruffin, A. Sharma, Short distance standoff Raman detection of extra virgin olive oil adulterated with canola and grapeseed oils. Appl. Spectrosc. 71(6), 1340–1347 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author was financially assisted through a student fellowship from the Indian Council of Agricultural Research, Senior Research Fellowship programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raouf Aslam.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article’s content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, R., Sharma, S.R., Kaur, J. et al. A systematic account of food adulteration and recent trends in the non-destructive analysis of food fraud detection. Food Measure 17, 3094–3114 (2023). https://doi.org/10.1007/s11694-023-01846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01846-3

Keywords

Navigation